Article Dans Une Revue Nature Communications Année : 2025

Integration of clinical, pathological, radiological, and transcriptomic data improves prediction for first-line immunotherapy outcome in metastatic non-small cell lung cancer

Marvin Lerousseau
Fanny Orlhac
Narinée Hovhannisyan-Baghdasarian
Marie Luporsi
Erwin Woff
Sarah Lagha
Paulette Salamoun Feghali
  • Fonction : Auteur
Christine Lonjou
Clément Beaulaton
Andrei Zinovyev
Hélène Salmon
Nicolas Girard
Emmanuel Barillot

Résumé

Abstract Immunotherapy is improving the survival of patients with metastatic non-small cell lung cancer (NSCLC), yet reliable biomarkers are needed to identify responders prospectively and optimize patient care. In this study, we explore the benefits of multimodal approaches to predict immunotherapy outcome using multiple machine learning algorithms and integration strategies. We analyze baseline multimodal data from a cohort of 317 metastatic NSCLC patients treated with first-line immunotherapy, including positron emission tomography images, digitized pathological slides, bulk transcriptomic profiles, and clinical information. Testing multiple integration strategies, most of them yield multimodal models surpassing both the best unimodal models and established univariate biomarkers, such as PD-L1 expression. Additionally, several multimodal combinations demonstrate improved patient risk stratification compared to models built with routine clinical features only. Our study thus provides evidence of the superiority of multimodal over unimodal approaches, advocating for the collection of large multimodal NSCLC datasets to develop and validate robust and powerful immunotherapy biomarkers.
Fichier principal
Vignette du fichier
41467_2025_Article_55847.pdf (4) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte

Dates et versions

hal-04950400 , version 1 (16-02-2025)

Licence

Identifiants

Citer

Nicolas Captier, Marvin Lerousseau, Fanny Orlhac, Narinée Hovhannisyan-Baghdasarian, Marie Luporsi, et al.. Integration of clinical, pathological, radiological, and transcriptomic data improves prediction for first-line immunotherapy outcome in metastatic non-small cell lung cancer. Nature Communications, 2025, 16 (1), pp.614. ⟨10.1038/s41467-025-55847-5⟩. ⟨hal-04950400⟩
0 Consultations
0 Téléchargements

Altmetric

Partager

More