Pré-Publication, Document De Travail Année : 2024

A CONVEX RELAXATION METHOD FOR FREE BOUNDARY PROBLEMS

Résumé

We derive a convex relaxation principle for a large class of non convex variational problems where the functional to be minimized involves a one homogeneous gradient energy. This applies directly to free boundary or multiphase problems in the case of the classical total variation or of some anisotropic variants. The underlying argument is an exclusion principle which states that any global minimizer avoids taking values in the intervals where the lower order potential is nonconvex. This allows using duality methods and deriving a saddle point characterization of the global minimizers. A numerical validation of our principle is presented in the case of several free boundary and multiphase problems that we treat through a primal-dual algorithm. The accuracy of the interfaces and the convergence of the algoritm benefit in a large way of a new epigraphical projection method that we introduced to tackle the non differentiability of the convexified Lagrangian.
Fichier principal
Vignette du fichier
Convex_relaxation_arxiv.pdf (1.78 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04820298 , version 1 (05-12-2024)

Licence

Identifiants

  • HAL Id : hal-04820298 , version 1

Citer

Guy Bouchitté, Minh Phan. A CONVEX RELAXATION METHOD FOR FREE BOUNDARY PROBLEMS. 2024. ⟨hal-04820298⟩

Collections

UNIV-TLN IMATH
23 Consultations
22 Téléchargements

Partager

More