Performance and Clinical Impact of Radiomics and 3D-CNN Models for the Diagnosis of Neurodegenerative Parkinsonian Syndromes on 18F-FDOPA PET - Centre Antoine Lacassagne
Article Dans Une Revue Clinical Nuclear Medicine Année : 2024

Performance and Clinical Impact of Radiomics and 3D-CNN Models for the Diagnosis of Neurodegenerative Parkinsonian Syndromes on 18F-FDOPA PET

Résumé

Purpose: The aim of this study was to compare the performance and added clinical value of a semiautomated radiomics model and an automated 3dimensinal convolutional neural network (3D-CNN) model for diagnosing neurodegenerative parkinsonian syndromes on 18 F-FDOPA PET images. Patients and Methods: This 2-center retrospective study included 687 patients with motor symptoms consistent with parkinsonian syndrome. All patients underwent 18 F-FDOPA brain PET scans, acquired on 3 PET systems from 2 different hospitals, and classified as pathological or nonpathological (by an expert nuclear physician). Artificial intelligence models were trained to replicate this medical expert's classification using 2 pipelines. The radiomics pipeline was semiautomated and involved manually segmenting the bilateral caudate and putamen nuclei; 43 radiomic features were extracted and combined using the support vector machine method. The deep learning pipeline was fully automatic and used a 3D-CNN model. Both models were trained on 417 patients and tested on an internal (n = 100) and an external (n = 170) test set. The final models' performance was evaluated using balanced accuracy and compared with that of a junior medical expert and nonexpert nuclear physician. Results: On the internal test set, the 3D-CNN model outperformed the radiomic model with a balanced accuracy of 99% (vs 96%). It led to diagnostic performance similar to that of a junior medical expert (only 1 in 100 patients misclassified by both). On the external test set from a less experienced hospital, the 3D-CNN model allowed physicians to correctly reclassify the diagnosis of 10 out 170 patients (6%). Conclusions: The developed 3D-CNN model can automatically diagnose neurodegenerative parkinsonian syndromes, also reducing diagnostic errors by 6% in less-experienced hospitals.
Fichier sous embargo
Fichier sous embargo
0 2 9
Année Mois Jours
Avant la publication
dimanche 2 mars 2025
Fichier sous embargo
dimanche 2 mars 2025
Connectez-vous pour demander l'accès au fichier

Dates et versions

hal-04682405 , version 1 (30-08-2024)

Identifiants

Citer

Thi Khuyen Le, Victor Comte, Jacques Darcourt, Micheline Razzouk-Cadet, Anne-Capucine Rollet, et al.. Performance and Clinical Impact of Radiomics and 3D-CNN Models for the Diagnosis of Neurodegenerative Parkinsonian Syndromes on 18F-FDOPA PET. Clinical Nuclear Medicine, inPress, 49 (10), pp.924-930. ⟨10.1097/rlu.0000000000005392⟩. ⟨hal-04682405⟩
86 Consultations
1 Téléchargements

Altmetric

Partager

More