An incremental diagnosis algorithm of human erroneous decision making - Laboratoire d'Informatique pour la Mécanique et les Sciences de l'Ingénieur
Communication Dans Un Congrès Année : 2023

An incremental diagnosis algorithm of human erroneous decision making

Résumé

This paper presents an incremental consistency-based diagnosis (CBD) algorithm that studies and provides explanations for erroneous human decision-making. Our approach relies on minimal correction sets to compute belief states that are consistent with the recorded human actions and observations. We demonstrate that our incremental algorithm is correct and complete wrt classical CBD. Moreover, it is capable of distinguishing between different types of human errors that cannot be captured by classical CBD.
Fichier principal
Vignette du fichier
main.pdf (269.22 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
licence

Dates et versions

hal-04188221 , version 1 (25-08-2023)

Licence

Identifiants

  • HAL Id : hal-04188221 , version 1

Citer

Valentin Fouillard, Nicolas Sabouret, Safouan Taha, Frédéric Boulanger. An incremental diagnosis algorithm of human erroneous decision making. 2nd International Conference on Human and Artificial Rationalities, Sep 2023, Paris, France. ⟨hal-04188221⟩
377 Consultations
67 Téléchargements

Partager

More