Long run convergence of discrete-time interacting particle systems of the McKean-Vlasov type - Laboratoire Traitement et Communication de l'Information
Pré-Publication, Document De Travail Année : 2024

Long run convergence of discrete-time interacting particle systems of the McKean-Vlasov type

Résumé

We consider a discrete-time system of n coupled random vectors, a.k.a. interacting particles. The dynamics involve a vanishing step size, some random centered perturbations, and a mean vector field which induces the coupling between the particles. We study the doubly asymptotic regime where both the number of iterations and the number n of particles tend to infinity, without any constraint on the relative rates of convergence of these two parameters. We establish that the empirical measure of the interpolated trajectories of the particles converges in probability, in an ergodic sense, to the set of recurrent Mc-Kean-Vlasov distributions. A first application example is the granular media equation, where the particles are shown to converge to a critical point of the Helmholtz energy. A second example is the convergence of stochastic gradient descent to the global minimizer of the risk, in a wide two-layer neural networks using random features.
Fichier principal
Vignette du fichier
HAL-2.pdf (499.94 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04512759 , version 1 (20-03-2024)
hal-04512759 , version 2 (25-03-2024)
hal-04512759 , version 3 (02-04-2024)
hal-04512759 , version 4 (29-09-2024)

Licence

Identifiants

Citer

Pascal Bianchi, Walid Hachem, Victor Priser. Long run convergence of discrete-time interacting particle systems of the McKean-Vlasov type. 2024. ⟨hal-04512759v4⟩
280 Consultations
89 Téléchargements

Partager

More