Monogamy of entanglement between cones - Réseau de recherche en Théorie des Systèmes Distribués, Modélisation, Analyse et Contrôle des Systèmes
Article Dans Une Revue Mathematische Annalen Année : 2024

Monogamy of entanglement between cones

Résumé

A separable quantum state shared between parties $A$ and $B$ can be symmetrically extended to a quantum state shared between party $A$ and parties $B_1,\ldots ,B_k$ for every $k\in\mathbf{N}$. Quantum states that are not separable, i.e., entangled, do not have this property. This phenomenon is known as "monogamy of entanglement". We show that monogamy is not only a feature of quantum theory, but that it characterizes the minimal tensor product of general pairs of convex cones $\mathsf{C}_A$ and $\mathsf{C}_B$: The elements of the minimal tensor product $\mathsf{C}_A\otimes_{\min} \mathsf{C}_B$ are precisely the tensors that can be symmetrically extended to elements in the maximal tensor product $\mathsf{C}_A\otimes_{\max} \mathsf{C}^{\otimes_{\max} k}_B$ for every $k\in\mathbf{N}$. Equivalently, the minimal tensor product of two cones is the intersection of the nested sets of $k$-extendible tensors. It is a natural question when the minimal tensor product $\mathsf{C}_A\otimes_{\min} \mathsf{C}_B$ coincides with the set of $k$-extendible tensors for some finite $k$. We show that this is universally the case for every cone $\mathsf{C}_A$ if and only if $\mathsf{C}_B$ is a polyhedral cone with a base given by a product of simplices. Our proof makes use of a new characterization of products of simplices up to affine equivalence that we believe is of independent interest.

Mots clés

Fichier principal
Vignette du fichier
2206.11805v1.pdf (273.02 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
licence

Dates et versions

hal-03720803 , version 1 (14-10-2024)

Licence

Identifiants

Citer

Guillaume Aubrun, Alexander Müller-Hermes, Martin Plávala. Monogamy of entanglement between cones. Mathematische Annalen, 2024, ⟨10.1007/s00208-024-02935-4⟩. ⟨hal-03720803⟩
105 Consultations
12 Téléchargements

Altmetric

Partager

More