Battery State of Charge estimation with Kalman filter - Réseau de recherche en Théorie des Systèmes Distribués, Modélisation, Analyse et Contrôle des Systèmes
Rapport Année : 2024

Battery State of Charge estimation with Kalman filter

Résumé

This notebook explores the State of Charge (SoC) estimation of a battery using a state observer algorithm, the Kalman filter, or more precisely its nonlinear extension: the extended Kalman filter (EKF). The notebook provides three Python implementations of the Kalman filter: 1. a step-by-step literate programming version of the filter, using a sequence of notebook cells, to implement one step of the filter, 2. a generic implementation (all the above steps wrapped in a single function) and 3. a compact implementation specialized for SoC estimation with baked-in battery model. Source notebook is available as supplementary material of this record or as an interactive version at https://github.com/pierre-haessig/pierre-notebooks.

Mots clés

Fichier principal
Vignette du fichier
Kalman filter battery SoC.pdf (172.38 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
licence

Dates et versions

hal-04701587 , version 1 (18-09-2024)
hal-04701587 , version 2 (18-09-2024)

Licence

Identifiants

  • HAL Id : hal-04701587 , version 1

Citer

Pierre Haessig. Battery State of Charge estimation with Kalman filter. CentraleSupélec; IETR UMR 6164. 2024. ⟨hal-04701587v1⟩
73 Consultations
34 Téléchargements

Partager

More