
HAL Id: hal-01958872
https://utc.hal.science/hal-01958872v1

Submitted on 16 May 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Solving coupled problems of lumped parameter models
in a platform for severe accidents in nuclear reactors

Louis Viot, Laurent Saas, Florian de Vuyst

To cite this version:
Louis Viot, Laurent Saas, Florian de Vuyst. Solving coupled problems of lumped parameter models in
a platform for severe accidents in nuclear reactors. International Journal for Multiscale Computational
Engineering, 2018, 16, pp.6. �10.1615/IntJMultCompEng.2018025643�. �hal-01958872�

https://utc.hal.science/hal-01958872v1
https://hal.archives-ouvertes.fr


ar
X

iv
:1

80
3.

07
01

6v
1 

 [
cs

.C
E

] 
 1

9 
M

ar
 2

01
8

Solving coupled problems of lumped

parameter models in a platform for severe

accidents in nuclear reactors

Louis Viot1,∗, Laurent Saas 2 and Florian De Vuyst 3

1CMLA, Ecole Normale Supérieure de Cachan, 94235 Cachan, France
∗email : louis.viot@cea.fr

1,2CEA, DEN, DTN/SMTA/LMAG, Cadarache, F-13108 Saint-Paul-lez-Durance, France
3LMAC, UTC, Sorbonne Universités, 60200 Compiègne, France

Abstract

This paper focuses on solving coupled problems of lumped param-
eter models. Such problems are of interest for the simulation of severe
accidents in nuclear reactors : these coarse-grained models allow for
fast calculations for statistical analysis used for risk assessment and so-
lutions of large problems when considering the whole severe accident
scenario. However, this modeling approach has several numerical
flaws. Besides, in this industrial context, computational efficiency is
of great importance leading to various numerical constraints. The
objective of this research is to analyze the applicability of explicit cou-
pling strategies to solve such coupled problems and to design implicit
coupling schemes allowing stable and accurate computations. The
proposed schemes are theoretically analyzed and tested within CEA’s
PROCOR platform on a problem of heat conduction solved with cou-
pled lumped parameter models and coupled 1D models. Numerical
results are discussed and allow us to emphasize the benefits of using
the designed coupling schemes instead of the usual explicit coupling
schemes.

Key words. Severe Accidents, Multiphysics, Coupling Scheme, Partitioned
Approach, Stability Analysis, Lumped Parameter Model, Complex System,
Computing Efficiency

Acronyms. LP, lumped parameter; ECS, explicit coupling scheme; ICS, implicit
coupling scheme

1 Introduction

Mathematical and numerical resolution of coupled multiscale and multi-
physics problems is a substantial issue arising in several engineering fields.
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In particular in the field of severe accidents in nuclear reactors [32] [17]
coupling thermohydraulics, thermomechanics, thermochemistry, thermo-
dynamics, neutronics phenomena with characteristic time, length and mass
going from microseconds to days, millimeters to meters, kilograms to hun-
dred of tons. In shuch a context, this requires the simulation of the whole
accident scenario or just a part of it leading to coupled problems of differ-
ent size. Furthermore, simulation can be used for statistical analysis, e.g.
Monte-Carlo sensitivity analysis, involving a large number of calculations,
or simply to have a finer and better understanding of some phenomenons.
Altogether and because of the lack of full physical and phenomenological
knowledge, a wide range of models for the underlying physical phenomena
are used, e.g. stationary models, reduced models, mesh based models, etc.
In particular, lumped parameter models (LP models), sometimes called
“0D” models, simplifie spatially distributed systems into discrete entities,
e.g. partial differential equations become parameterized ordinary differ-
ential equations over time, in such a way that calculations require much
less running time and a much lower computational cost. However, such
simplifications come with a price to pay:

• LP models ignore the finite time of propagation of information of
the continuous or space and time discretized model and instantly
communicate and spread them;

• closure laws used in LP models are often described with highly non-
linear functions of time and of the model internal state variables,
e.g. correlations fitted from mesh based calculations or experimental
results [3] [34];

• state, phase or topological changes in the continuous time and space
model, e.g. disappearance, vaporization, are turned into instant inter-
nal changes and sometimes discontinuous event triggered at a certain
time by the LP model, which can be compared to event occuring in
Differential Algebraic Equations (DAE) [24]. A state change event missed
by the simulation engine can bring the coupled models in a non coher-
ent and non physical state during a small window of time resulting in
numerical errors, numerical instabilities which have to be avoided at
all cost;

As a result, coupled problems of LP models can have fast and stiff transients
which are numerically challenging to solve.

There are two approaches to solve such coupled problems : a monolithic
approach which solves the governing equations describing each model si-
multaneously and a partitioned approach [12], its counterpart, in which
coupled models are associated to the so-called partitions which are solved
one at a time during the coupling iterations. One of the advantage of such

2



partitioned approaches is that the solution of partitions can be done with
different solvers adapted to the physical phenomenon involved in the par-
tition. Moreover, great modularity and software reuse is achieved since
partition solvers are assumed to be seen as “black box” by the partitioned
problem with a set of inputs, a set of outputs and very limited internal
details (e.g. derivative data) and thus can be easily exchanged. In this ap-
proach, partitions deliver physical quantities such as heat fluxes, forces,
pressures, mass flow rates to other coupled partitions. In contrast with the
monolithic approach, coupling equations between partitions are not part of
a one block system of equations, instead, partitions are sharing data with
external coupling equations corresponding to equilibrium conditions, e.g.
heat flux equality between two thermal partitions sharing a geometrical
interface [15] or temperature equality between a thermal partition and a
thermodynamic partition sharing a common temperature. Because of pos-
sible decoupling effects between partitions, equilibrium conditions might
not be enforced by the coupling algorithm leading to loosely or weakly cou-
pled partitions. Therefore, there are two main classes of coupling schemes
:

• Explicit coupling schemes (ECSs) [12, 8, 16, 11, 10, 9] which require
only one call of each solver one after the other during each time
step but which can only achieve weak coupling between the coupled
partitions at the end of the time step.

• Implicit coupling schemes (ICSs) [18, 26, 14, 5, 19, 33, 6, 27, 13, 20]
which require several calls of solvers within an iterative loop until a
certain convergence threshold. If the scheme has converged, equations
and subdomains are strongly coupled at the end of the time step, up
to a certain precision, and the monolithic scheme is recovered.

In this paper, we focus on the numerical solution of heterogeneous 0D
and 1D models by partitioned approaches. In this very specific context
of modeling, we show how ECSs are often not suitable for the solution of
such problems and implicit treatment is often necessary. We furthermore
explain how regular ICSs are modified in order to take into account state
change events triggered by the models. By this way, the coupled models
can be synchronized on potential events and discontinuities.

The paper is structured as follows. Section 2 gives a brief overview
of the lumped parameter mass and energy conservation governing equa-
tions in each subdomain and models used for the different previously cited
phenomena ; for the sake of simplicity and conciseness, we only consider
coupled thermalhydraulic phenomena. We believe that the extension to
any other phenomena (e.g. thermochemistry, thermomechanic, neutronic,
etc.) is similar. From there, the coupled formulation is explained and the
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Figure 1: The abstract representation of domain decomposition ofΩ focused
on domain Ω

i
and its neighbourhoodΩ

j∈Ni
.

coupling algorithms are given in section 3. In section 4, we give numer-
ical analysis, computations and discussions of a coupled problem solved
with various coupling schemes within the PROCOR platform [21]. Finally,
conclusion and opening remarks are given in section 5.

2 Governing equations

To simplify, we assume that the coupled problem to solve consists of differ-
ent physics located at different subdomains. Figure 1 depicts a non over-
lapping domain decomposition of domain Ω � ∪i∈~1,m�Ωi

. Neighbouring
domainsΩ

j
coupled with domainΩ

i
communicating through interface Γ

i j

can be actual geometrical neighbor of domainΩ
i
, i.e. Γ

i j
� ∂Ω

i
∩∂Ω

j
, ∅ or

can be distant neighbor of domain Ω
i

with whom it has linked but distant
phenomena, i.e. ∂Ω

i
∩∂Ω

j
� ∅ and Γ

i j
is a part of frontier ∂Ω

i
of domainΩ

i
.

Neighbors of domain Ω
i

are represented by the set Ni � { j / ∃ Γi j
}, with

cardinality denoted by ni � card(Ni). Finally, frontier of domain Ω
i
can be

calculated by ∂Ω
i
� Γ

i
∪ (∪ j∈NiΓi j

). Subdomain Ω
i
is described in terms of

mass denoted by m
i
[kg] and average temperature denoted by T

i
[K]. We

have :

mi �
1

VΩ
i

∫

Ω
i

ρ dV, Ti �
1

VΩ
i

∫

Ω
i

T dV.

The vector of state variables of subdomain Ω
i

is denoted by ui � (mi , Ti)t.
Note that in this article we decide to represent each subdomain in term
of average temperature even though they could be represented in term of
average enthalpy.

Interface variables are heat fluxes φ
i j
[W.m−2], temperature T

i j
[K], mass

flow rate Ûm
i j
[kg.s−1] or surface area S

i j
[m2]. These variables are gathered in

vector b � {(φ
i j
, T

i j
, Ûm

i j
, S

i j
)t} for i ∈ [1,m] and j ∈ Ni. The interface projec-

tor Pi j allows us to get interface Γ
i j

vector variables bi j � (φi j
, T

i j
, Ûm

i j
, S

i j
)t
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from vector b with Pi jb � bi j .
We first describe the lumped parameter governing equations for each

subdomain in section 2.1 and then present the interface equations between
subdomains in section 2.2.

2.1 Subdomain lumped parameter equations

SubdomainΩ
i
equations are expressed in terms of mass and energy macro-

scopic conservation equations (momentum conservation equations are mod-
eled by closure laws, e.g. correlations for heat transfer coefficient). They are
obtained from the local conservation equations, here Navier-Stokes equa-
tions under the Boussinesq approximation for liquid domains and heat
equations for solid domains, integrated over the corresponding subdomain
(see [22]). Tightly linked to the local physical model, this approach leads to
the so-called LP model or “0D” model of the subdomain described by the
two ordinary differential equations (ODE)

dm
i

dt
�

∑

j∈Ni

Ûmi j in Ωi , (1)

miCpi

dT
i

dt
+

∑

j∈Ni

Ûmi jCpi(Ti − Ti j) � σiφiSi +

∑

j∈Ni

σi jφi jSi j + mi Ûqi in Ωi

(2)

with m
i
[kg] the mass and T

i
[K] the average temperature ofΩ

i
, φ

i
[W.m−2]

the heating (σi � 1) or cooling (σi � −1) heat flux through boundary
Γ

i
� ∂Ω ∩ ∂Ω

i
with temperature T

b i
and area S

i
[m2], φ

i j
the heating or

cooling heat flux and Ûm
i j
[kg.s−1] the algebraic mass flow rate through

Γ
i j

with temperature T
i j

and area S
i j

. Finally, Cp
i
[J.kg−1.K−1] is the heat

capacity and Ûq
i
[W.kg−1] is the residual power per mass unit coming from

fission products of subdomain Ω
i
.

The previous physical parameters are obtained from closure laws de-
scribed hereafter in section 2.2. In particular, geometry dependent values,
i.e. the characteristic length of a domain or the surface of an interface or the
volume of a domain, are given by algebraic geometry equations. They take
the form of algebraic functions, e.g. for the previous surface :

Si j � Si j(ρi , ei ,Vi) (3)

with e
i
[m] the characteristic length and V

i
[m3] the volume of domain Ω

i
.

Altogether, ordinary differential eqs. (1) and (2) combined with expressions
like eq. (3) can be considered as Differential Algebraic Equations (DAE’s) [28]
describing the LP model.
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2.2 Interface equations

In the present article, interfaces between two subdomainsΩ
i
andΩ

j
can be

of two types : free moving or fixed boundaries. Physically moving bound-
aries are, for example, boundaries between a liquid and a solid domain
exchanging melted or solid materials. They are associated with a plane
fusion solidification front corresponding to the Stefan condition at the in-
terface (see [22] for further details). Fixed interfaces correspond to thermal
equilibrium assuming no mass exchange through the interface and thermal
conduction.

In case of a mobile interface, equilibrium conditions at the interface Γ
i j

are given by

Ûmi j � − Ûm ji in Γi j , (4)

φi jSi j � −φ jiS ji + ∆H fus. Ûmi j in Γi j , (5)

Ti j � T ji � Tfus. in Γi j (6)

with ∆H fus. the fusion enthalpy and Tfus. the fusion temperature of domain
Ω

i
, both assumed to be fixed. In particular, those conditions stipulate

that the mass flow rate should be the same on both sides of the interface
for mass conservation and that the heat fluxes should respect the Stefan
condition. To simplify subdomain materials are treated as pure body and
no thermochemistry is considered.

In case of a fixed interface, the thermal equilibrium conditions at inter-
face Γ

i j
are given by

Ûmi j � − Ûm ji � 0 in Γi j , (7)

Ti j � T ji in Γi j , (8)

φi jSi j � −φ jiS ji in Γi j (9)

Obviously, with the previous equations, appropriate closure laws for
interface heat fluxes and temperatures are required. In traditional mesh
based models, interface variables are given by a projection operator which
are coherent with the domain equations, e.g. the restriction of the variables
values over all the domain Ω

i
to its interface Γ

i j
� ∂Ω

i
∩ ∂Ω

j
, and thus are

consistent with the physical equations. For LP models, interface variable
bi j is calculated from spatially averaged data ui from domain Ω

i
and data

({bi j} j∈Ni )
def
� bi⋆ from the interfaces. They are given by closure laws which

take the form of algebraic functions bi j � bi j(ui , bi⋆). Thus they propagate
data instantly, from one specific interface to all the other ones.

If the domain Ω
i

is solid, such closure law functions for heat fluxes
φ

i• can be calculated from the heat diffusion conduction equation under
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certain assumptions and approximations. A comparison of those different
approximate models with a reference solution given by a finite element
discretization of the heat conduction equation can be found in [22]. For
example, the stationary model uses a 1D cylindrical with adiabatic lateral
boundaries approximation and assumes a quadratic temperature profile in
the solid domain. Conduction heat fluxes at interfaces Γ

i j
and Γ

ik
asso-

ciated with the upper and lower cylinder surfaces are then given by the
temperature derivative w.r.t the spatial direction leading to the closure law
functions [22] :

φi j � φi j(ui , bik) � λi

6T
i
− 4T

i j
− 2T

ik

e
i

, (10)

φik � φik(ui , bi j) � λi

6T
i
− 4T

ik
− 2T

i j

e
i

. (11)

Note, for instance, the instant propagation of interface Γ
ik

temperature T
ik

to interface Γ
i j

in eq. (10) indicating that the stationary model gives closure

law functions which propagate boundary related data instantly between
interfaces of the domain.

Let us mention that, in the literature, one can find other nonlinear closure
laws like φ

i j
(ui , bi⋆) ∝ eα

i
(T

i
−T

i j
)β with α, β ∈ R for convective heat transfer

or φ
i j
(ui , bi⋆) ∝ T

i j
4 for radiative heat transfer. In this paper, we will only

consider eqs. (10) and (11).

3 Coupling formulation and schemes

3.1 Discretized coupling formulation and coupled problem

LP conservation equations eqs. (1) and (2) are then discretized in time at
a lower level with a method of choice (e.g. explicit, implicit, Euler, Runge-
Kutta, multistep methods, etc.) and then coupled in time on a higher level
resulting in a two-level time scheme. At the highest level, those discretized
equations are solved and coupled between times t0, t1, . . . , tn , . . . with a
macro time step ∆t and synchronized at each of these times. At the lowest
level, each subdomain manages its own time integration scheme, its own
micro time step δt and its own internal time. The integration scheme used
by the subdomain is assumed to be adapted to the physical local problem.
In the following, discretized values evaluated at time tn are denoted by the
superscript n.

We adopt the following notations. For each coupled subdomain {Ω
i
}i∈[1,m] ,

discretized equations are represented by a function F ∆t
i

used to solve and
advance in time the problem of one time step ∆t. This function takes as pa-

rameters the state vector ui and the input interface variables {b ji} j∈Ni

def.
� b⋆i
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of domain Ω
i
. Equations of the coupled problem are then given by




F ∆t
1 (u1 , {b j1(u j , b⋆j)} j∈N1 ) � 0

F ∆t
2 (u2 , {b j2(u j , b⋆j)} j∈N2 ) � 0

...

F ∆t
m (um , {b jm(u j , b⋆j)} j∈Nm ) � 0

(12)

in such a way that the inter dependencies between domainΩ
i
and its neigh-

bors are highlighted by the closure law functions {b ji} j∈Ni which is function
of the coupled subdomain internal variable u j and interface variables b⋆j ,
which might in turn need values from domain Ω

i
to be calculated.

Those interface dependencies highlight the input-output relationship
between interface variables of the different subdomains. This suggests that
solvers can be seen as closed entities or “black-boxes” taking input interface
variables b⋆i from neighboring subdomains and giving back output inter-
face variables bi⋆ to neighboring subdomains. Therefore, it seems natural to
represent solver of domain Ω

i
as a functionM∆t

i
: R3×ni 7→ R3×ni in which

we explicitly hide subdomain state variable ui and its integration, and only
the input and output interface variables are visible. It is possible that we
have access to limited information about them, e.g. no derivative data. For
instance, solver of domain Ω

i
is defined by

bi⋆ �M∆t
i (b⋆i). (13)

From eq. (13), we can define the coupled problem at interface Γ
i j

in term

of solvers :

bi j � Pi j ◦M∆t
i

(
b ji , {bki}k∈Ni , k, j

)
, (14)

b ji � Pji ◦M∆t
j

(
bi j , {bk j}k∈N j , k,i

)
(15)

with Pi j the interface Γ
i j

projector. Those equations emphasize the “action-

reaction” at interface between the two domains : a slight modification of
interface variable b ji will in turn change the associated interface variable
bi j , and vice versa. The strength of the associated coupling is represented

by the Jacobian matrices { ∂M
∆t
i

∂bki
}k∈Ni

and {
∂M∆t

j

∂bk j
}k∈N j

. Moreover it is difficult

to evaluate this strength since they may not be available.
Combining eq. (14) with eq. (15) gives the widely used fixed point equa-

tion at interface Γ
i j

(see [25])

bi j � Pi j ◦M∆t
i

(
Pji ◦M∆t

j

(
bi j , {bk j}k∈N j , k,i

)
, {bki}k∈Ni , k, j

)
(16)
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which allows us to define the residual operator Ri j at interface Γ
i j

by

Ri j(bi j)
def
� Pi j ◦M∆t

i

(
Pji ◦M∆t

j

(
bi j , {bk j}k∈N j , k,i

)
, {bki}k∈Ni , k, j

)
− bi j

(17)
for a guess candidate bi j . The residual Ri j(bi j) will express the imbalance
created at interface Γ

i j
: if domainsΩ

i
andΩ

j
are strongly coupled, equilib-

rium conditions at interface are fulfilled and the interface residual is null,
otherwise the two domains are only weakly coupled.

3.2 Coupling schemes

Explicit coupling schemes (ECSs). Referred to as “conventional serial
staggered” in [12], ECSs solve the coupled problem with one call of solver
per time step. They are based on a Gauss-Seidel semi-explicit solution
of the coupled problem eq. (12). Obviously, another scheme based on a
fully-explicit or Jacobi solution can be used to allow for more algorithm
parallelism. If we assume that solverM∆t

i
is solved before solverM∆t

j
, the

scheme solves at interface Γ
i j

:

bn+1
i j � Pi j ◦M∆t

i

(
bn

ji , {b
•
ki}k∈Ni , k, j

)
, (18)

bn+1
ji � Pji ◦M∆t

j

(
bn+1

i j , {b
•
k j}k∈N j , k,i

)
(19)

with b•
ki

is evaluated at tn or tn+1 if solver M∆t
k

is called before or after

solverM∆t
i

.
While potentially attractive and fast since only one call per solver is

done during each time step, it is well known that this scheme yields poor
accuracy and stability issues [30]. Because of the time-lag caused by the
semi-explicit resolution, it is unlikely that interface residuals defined by
eq. (17) are null and equilibrium conditions are not enforced at interface.
Besides, despite several improvements and studies in [8] [16] [11] [10] [9]
[29], the weak coupling reached by explicit coupling schemes is often not
enough and only a strong coupling at the end of the time step can ensure
proper stability properties [4] [15].

Implicit coupling schemes (ICSs). A way to fix the time-lag is to use
implicit coupling between subdomains. At interface Γ

i j
, implicit coupling

gives :

bn+1
i j � Pi j ◦M∆t

i

(
bn+1

ji , {b
n+1
ki }k∈Ni , k, j

)
, (20)

bn+1
ji � Pji ◦M∆t

j

(
bn+1

i j , {b
n+1
k j }k∈N j , k,i

)
(21)

9



We clearly see that eqs. (20) and (21) give discrete interface values re-
specting the fixed point eq. (16) leading to a null interface residual. Hence,
interface Γ

i j
is at equilibrium and a strong coupling between equations

is obtained. However, while being mathematically interesting, eqs. (20)
and (21) do not allow to decouple the two equations at each time step and it
is often more convenient to use iterative methods to solve them. By iterative
methods we mean methods using iterative processes inside one coupling
iteration, i.e. between times tn and tn+1, until a convergence criterion is
reached. In that case interface variables verify (with an error bounded by
the convergence criterion) at each interface the associated fixed point eq. (16)
leading to a strong coupling between equations of the coupled problem. At
interface Γ

i j
between domain Ω

i
and Ω

j
, the block Gauss-Seidel coupling

scheme, also known as staggered or partitioned coupling scheme, is an
iterative method based on Newton-Raphson iterations of the fixed point
eq. (16) given by

bn+1,k+1
ji

� bn+1,k
ji

+

(
dR ji

db ji

���
b

n+1,k
j i

)−1

(−R ji(bn+1,k
ji
)) (22)

with the residual R ji(bn+1,k
ji
) at iteration k defined by

R ji(bn+1,k
ji
) � rn+1,k

ji
�M∆t

j ◦M
∆t
i (b

n+1,k
ji
) − bn+1,k

ji
(23)

which allows us to define a convergence criterion for the iterative process
by M∆t

j
◦M∆t

i
(bn+1,k

ji
) − bn+1,k

ji


bn+1,k

ji


�

rn+1,k
ji


bn+1,k

ji


≤ ǫrel (24)

with ǫrel the relative stopping criterion for the subiterative process. Gauss-
Seidel or staggered symbolizes the way interfaces data are sequenced through
solvers (or block) inside coupling iterations.

Remark on Jacobian matrices and associated solvers. In eq. (22), the Ja-
cobian matrix or its inverse are usually not known and/or not calculable
since solvers are seen as black-box solvers, thus the iterations can only be
approximated by approximation of the Jacobian matrix or its inverse lead-
ing to Quasi-Newton techniques. In [14], Gerbeau and al. use reduced
order models to calculate the Jacobian matrix. In [26], Michlet and al. use
Newton-Krylov subiterations to approximate the Jacobian matrix leading
to the so-called Jacobian free Newton-Krylov method. From previous resid-
uals, Degroote and al. in [5] solve least-squares problems to approximate
the inverse of the Jacobian matrix leading to Interface Quasi-Newton - Inverse
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Least-Squares (IQN-ILS) methods while Vierendeels and al. [33] approxi-
mate the Jacobian matrix with similar methods leading to Interface Quasi-
Newton - Least-Squares (IQN-LS). Multigrid Quasi-Newton methods are also
studied in [6]. A recent review of different Quasi-Newton methods can be
found in [27] for fluid-structure interaction and in [13] for thermal-structure
interaction.

Much cheaper methods use relaxation techniques for the interface vari-
able iterations which consists in using an approximation of the inverse of
the interface residual Jacobian matrix of the form

(
dR ji

db ji

���
bn+1,k

j i

)−1

≈ −ωk I (25)

for which the fixed point iterations with dynamic relaxation are given by

bn+1,k+1
ji

� ωkM∆t
j ◦M

∆t
i (b

n+1,k
ji
) + (1 − ωk)bn+1,k

ji
. (26)

Note that for ωk
� 1, iterations given by eq. (26) are classical Picard itera-

tions which converge generally only linearly and very slowly. In [20], the
authors show that the block Gauss-Seidel iterative method with relaxation
techniques for the resolution of equation eq. (22) can be very efficient at
a surprisingly low cost in comparison to more elaborated Quasi-Newton
methods. Besides, it is shown in [31] that these techniques are also proven
to be very competitive in comparison to the direct solution of the nonlinear
problem given by eq. (22) with traditional Newton-Raphson methods us-
ing derivative data. In this paper, we focus on block Gauss-Seidel iterative
method with relaxation techniques.

For instance, the solution of equation eq. (22) by the Steffensen’s method
accelerated with Aitken’s delta-squared∆2 method [1] can be cast into fixed
point iterations with dynamic relaxation leading to methods of order 2, see

[31]. Less costly but with a convergence rate of the golden ratio 1+
√

5
2 , the

fixed point iterations given by the secant method can also be seen as fixed
point iterations with dynamic relaxation leading to

ωk
� −ωk−1

〈 rn+1,k
ji
− rn+1,k−1

ji
, rn+1,k−1

ji
〉

〈 rn+1,k
ji
− rn+1,k−1

ji
, rn+1,k

ji
− rn+1,k−1

ji
〉
. (27)

One can also use constant relaxation given by a constant parameter ω.
However, this requires the determination of the best relaxation parameters,
i.e. leading to the highest rates of convergence, which is highly problem-
dependent.
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Figure 2: The abstract representation of states Ω
(1)
i

and Ω
(2)
i

of domain Ω
i
.

Each state has its own interfaces Γ
(1)
• and Γ

(2)
• with associated variables b

(1)
•

and b
(2)
• . A state transition occurs when a transition function crosses zero.

Implicit coupling schemes for event detection and model synchroniza-

tion. In LP modeling, state transitions are triggered by internal events
corresponding to activation of threshold functions. This activation is de-
pendent on input from the coupled models and thus times of events are
unknowns of the coupled problem. As depicted fig. 2, each state has its
own solver, its own set of equations and its own interface and boundary
conditions.

State transition can lead to discontinuities of state or interface variables.
A missed event can lead to inconsistent and incoherent physical states, e.g.
the disappearance of a model not seen by other coupled models, and/or
mathematical difficulties with non-smooth functions in the coupled prob-
lem eq. (12) bringing usual theorems out of their scope of validity, with
possibly breakdown issue like divergence of Newton iterations.

During one coupling time step ∆t, the coupling scheme must be able
to adapt its time step to synchronize all the models on the time of the first
event. However, synchronization strategies are hard to achieve with ECSs
which can often only synchronized coupled models at each coupled time
step leading to time detection errors of order O(∆t). Hereafter, we describe
how the previous ICSs can be used for event detection to ensure proper
synchronization between models.

Let us consider the coupling at interface Γ
i j

between domain i and j. As

depicted in fig. 3, internal events are triggered during one coupling time step
∆t by solverMi and/or solverM j at respective times t⋆

i
and t⋆

j
between

tn and tn
+ ∆t. When an event occurs, the solver stops its computation

and do not compute the whole coupling time step ∆t. Solvers should be
synchronized on the first triggered event at time t⋆ � t⋆

j
.

During a fixed point iteration of an ICS starting at time tn and ending at
the previously calculated time of first event t⋆,k , events are trigerred at times

t⋆,k
i

and t⋆,k
j

by solvers. The aim is to build an iterative algorithm calculating

12



Mi internal time loop

M j internal time loop

Shared time loop

tn tn
+ ∆t

t⋆,k

t⋆
i

t⋆
j

t⋆

t⋆,k
i

t⋆,k
j

t̃⋆,k t⋆,k+1

α t̃⋆,k+(1−α)t⋆,k

Figure 3: Shared coupling time loop and internal time loops of solversMi

andM j . Internal events at times t⋆
i

and t⋆
j

are to be detected by the scheme

in order to synchronize on time t⋆ of the first event. An ICS detects event

at times t⋆,k
i

and t⋆,k
j

and has to calculate the new iteration t⋆,k+1 in such a

way that t⋆,∞ ≈ t⋆.

the new iteration t⋆,k+1 in such a way that : t⋆,∞ ≈ t⋆. Algorithm 1 gives
a sequence to calculate this new iteration. At convergence, the coupled
problem has been solved between times tn and tn+1

� t⋆,∞. The next
coupling time step then starts at time tn+1 with the same algorithm.

Concluding remarks regarding the designed iterative algorithm. At con-
vergence k � ∞ of a coupling time step between times tn and tn+1 at interface
Γ

i j
, we get that :

• Model i and model j are strongly coupled because the fixed point
eq. (16) is verified with at most an error bounded by the tolerance ǫrel

of the scheme, i.e.
M∆t

j
◦M∆t

i
(bn+1,∞

ji
) − bn+1,∞

ji


bn+1,∞

ji


≤ ǫrel.

• Model i and model j are synchronized on potential internal triggered
events. In particular, they are synchronized on the time of the first
event with an error also bounded by the tolerance ǫrel, i.e.

��tn+1 − t⋆
��

∆t
�
|t⋆,∞ − t⋆|
∆t

≤ ǫrel

4 Numerical analysis and examples

In the following, the aim is to present numerical solutions of some coupled
LP models implemented in the CEA’s PROCOR platform with both ECSs
and ICSs. The industrial PROCOR platform [21] allows generic “black-box”

13



Algorithm 1 Calculate the new iteration t⋆,k+1

1: Compute a new fixed point iteration between solvers M∆t
i

and M∆t
j

with an ICS;
2: if an event has occurred for model l ∈ {i , j} then

3: t⋆,k
l
← the corresponding event time;

4: else

5: t⋆,k
l
← tn

+ ∆t;
6: /* the whole coupling time step ∆t was computed. */
7: end if

8: t̃⋆,k ← min (t⋆,k
i
, t⋆,k

j
);

9: if (| t̃⋆,k − t⋆,k |/∆t < ǫrel) and (the ICS has converged at interface Γ
i j

) then

/* ǫrel being a tolerance given by the ICS. */
10: t⋆,k+1 ← t̃⋆,k ;
11: t⋆,∞← t⋆,k+1;
12: else

13: t⋆,k+1 ← α t̃⋆,k + (1 − α)t⋆,k ;
14: /* α ∈]0, 1[ being a relaxation parameter given by the ICS. */
15: end if

physical models coupling solved by various ECSs and ICSs. It is dedicated
to the fast robust setup of coupled problems taking the form of complex
systems [2] for the simulation of severe accidents in nuclear reactors. For
computational efficiency reasons in this industrial context, one important
constraint is that we want to be able to keep a sufficiently large coupling time
step in comparison to the characteristic times of the physical phenomena
being involved. With this constraint, it will be shown that even “simple”
coupled problems of LP models may produce unexpected artifacts in terms
of coupling and synchronization and how the use of ICSs to solve them can
provide benefits.

For instance, let us consider the heat conduction between domains Ω
1

and Ω2 calculated respectively by solvers M1 and M2. As depicted in
fig. 4, solvers are coupled at interface Γ12 � ∂Ω1 ∩ ∂Ω2 of unit area S � 1
with Dirichlet-Neumann boundary conditions given by eqs. (4) to (6) or
eqs. (7) to (9). This coupling ensure the well posedness of the domain
decomposition problem [7]. For this coupled problem, two types of heat
conduction solvers are used : LP solvers and finer solvers based on a space
discretization of the 1D heat equation. Finally, we assume a cylindrical
geometry in such a way that the length and mass of each domain are related
with m{1,2} � ρ{1,2}Se{1,2} � ρ{1,2}e{1,2}.

14



Ω1: m1 ,T1 ,ρ1 ,Cp1 ,λ1

Ω2: m2 ,T2 ,ρ2 ,Cp2 ,λ2

z

0

e2

e1

Γ12

φ12 , Ûm12 , T12

φ21 , Ûm21 , T21

T
b1
≫T

b2
in ∂Ω1\Γ12

T
b2
≪T

b1
in ∂Ω2\Γ12

φ
12
�M1(T21

, Ûm
21
)

[T
21
, Ûm

21
]�M2(φ12

)

φ
12 [T

21
, Ûm

21
]

Figure 4: Heat conduction between domains Ω
1

and Ω
2

: notations (left)
and Dirichlet-Neumann coupling of solversM1 andM2 (right).

4.1 Linear stability of the coupling of lumped parameter solvers

First, we consider the Dirichlet-Neumann boundary conditions at the fixed
interface Γ12 given by eqs. (7) to (9) Ûm12 � − Ûm21 � 0, T12 � T21 , φ12 � −φ21.
The two domain masses are constant and only their energy conservation
equations are calculated. In the following, we analyze the linear stability of
the coupling of LP solvers. They are based on a time discretization of the
energy conservation eq. (2) and closure laws eqs. (10) and (11) to solve the
heat conduction problem. A similar stability analysis for finer 1D solvers
can be found in [15].

4.1.1 Stability of a toy explicit coupling scheme

The aim here is to build a prototype of a ‘toy’ ECS with no subcycling and
only one level of time discretization. Such coupling scheme should allow us
to solve the coupled problem while solvers of domains Ω

1
and Ω

2
are only

called once during a time step. To do so, we use an implicit Euler scheme
for the first domainΩ1 and an explicit Euler scheme for the second domain
Ω2 . Denoting by ∆t the time step, the discretized equations for the first
domain Ω1 are given by





φn
12 � λ1

6Tn
1 − 2T

b1
− 4Tn

12

e
1

in Ω1

ρ1Cp1e1

Tn
1
− Tn−1

1

∆t
� −φn

12 in Ω1

(28)

with continuity of temperature at the interface, i.e.

Tn
12 � Tn

21 on Γ12 (29)

and for the second domain Ω2




Tn+1
21 � −1

4

e
2

λ2

φn
21 +

3

2
Tn+1

2 − 1

2
Tb2

in Ω2

ρ2Cp2e2

Tn+1
2 − Tn

2

∆t
� −φn

21 in Ω2

(30)
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with continuity of heat flux at the interface, i.e.

φn
21 � −φn

12 on Γ12. (31)

The ECS is sequenced as follows : given an interface temperature Tn
21

at
time tn , the first domain is advanced from time tn−1 to tn and a heat flux
φn

12
is computed at time tn which is then imposed to the second domain. It

is then advanced from time tn to tn+1 and it computes a new temperature
Tn+1

21 at time tn+1, and so on. Thus, the coupling scheme only requires one
call to each solver per time step so that the scheme can be called explicit.

We now analyze the linear stability of the coupling scheme. Combining
eqs. (28) to (31), we get

(
1 + 6

∆t

τ1

)
φn+1

12 −
(
1 +

(
1 − 6

∆t

τ2

)
~

)
φn

12 + ~φ
n−1
12 � 0 (32)

with ~ �
λ

1
/e

1

λ
2
/e

2
, the characteristic times of conduction τ1 � ρ1Cp1e1

2/λ1 in

domain Ω1 and τ2 � ρ2Cp2e2
2/λ2 in domain Ω2. To ensure stability of the

explicit scheme in domain Ω2, ∆t has to be small in comparison to τ2, i.e.
∆t/τ2 ≪ 1. The simplified characteristic polynomial χ associated to the
simplified second order linear difference eq. (32) has two complex roots
x⋆{1,2} which have to be of modulus strictly smaller than one in order to

guaranty a stable coupling scheme.
We get the following results :

• When ∆t/τ1 ≪ 1 and ~ < 1, the two roots are real and a Taylor
expansion gives

x⋆1 � 1 − 6

1 − ~
∆t

τ1
+ O(

(
∆t

τ1

)2

)

x⋆2 � ~ +
6~2

1 − ~
∆t

τ1
+ O(

(
∆t

τ1

)2

)

When ∆t/τ1 ≪ 1 and ~ > 1, the two roots are complex of modulus

���x⋆{1,2}
���
2

�
~

1 + 6∆t
τ1

• For any values of ∆t/τ1, when ~ ≪ 1, roots of the characteristic
polynomial χ are x⋆1 ≈

1
1+6 ∆t

τ1

and x⋆2 ≈
~

1+6 ∆t
τ1

and when ~ ≫ 1, x⋆1 ≈

1 +

6 ∆t
τ1
~

and x⋆2 ≈
~

1+6 ∆t
τ1

.
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Thus, in both cases when ~ > 1 the spurious solution for φ12 of eq. (32)

associated to root x⋆2 increases with a growth rate of ~

1+6∆t/τ1
. In most cases,

the spurious solution will grow in time leading to an unstable scheme. On
the contrary, cases when ~ < 1 give a stable coupling scheme.

Thus, the remaining question is the value ~crit of ~ above which the insta-
bilities appear, thus defining the stability limit region of the ECS. Further

calculations show that ~crit
�

���1+ 6 ∆t/τ1

1− 6 ∆t/τ2

��� allowing to define a pseudo CFL

condition for the linear stability of the ECS :

r12(∆t) def.
�

����
1 − 6 ∆t/τ2

1 + 6 ∆t/τ1

���� ~ < 1 (33)

Finally, the Dirichlet-Neumann explicit coupling should be done in such
a way that the domain with the Dirichlet boundary condition, i.e. imposed
boundary temperature, has the lower thermal conductivity or the higher
characteristic length and the domain with the Neumann boundary condi-
tion, i.e. imposed boundary heat flux, has the higher thermal conductivity
and the lower characteristic length. Thus, the stability limit region ~crit

can be extended for larger values of ∆t/τ1 which can be explained by the
diffusive properties of the ICS used in domain Ω

1
.

Numerical evidence of stability. This analysis is illustrated by fig. 5. At
t � 0−, both domains are at an equilibrium temperature of T1 � T2 �

T21 � T
b1

� T
b2

� 2000 K. Boundary discontinuities are imposed at t � 0+,

T
b1

� 3000 K and T
b2

� 400 K and at t � 3 τ1, T
b1

� T
b2

� 2000 K. In addition,

all of the computations use the value ∆t/τ2 � 1/100 and ∆t/τ1 � 1/10
corresponding to a stability limit region ~crit

� 1.6. Figure 5a shows that
when ~ � ~crit the oscillations created by the transient initiated by the
boundary discontinuities are not damped but are stable while in contrary
in fig. 5c with ~ < ~crit the oscillations are well damped and in fig. 5d with
~ > ~crit the oscillations are clearly unstable. However, those three figures
show that the discontinuities at boundaries are instantly propagated to the
interface temperature and to the coupled domain in only one coupling time
step. For comparison purpose, solution given by the coupling of the 1D heat
equation solvers is given in fig. 5b. For the computation, the same physical
values as for the coupling of LP solvers are used. The values meet the
requirements expressed in [15] to ensure proper stability of such solvers.
For this coupling, the discontinuities at boundaries start a much slower
and smaller transient (T21(t � 1000 s) ≈ 2150 K) than for the LP coupling
(T21(t � 100 s) ≈ 2700 K). The fact that LP models propagate in one coupling
time step all their discontinuities to the other models tend to create fast and
important transient. Thus, the use of ECS might not be adapted for this
case.
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(a) LP solvers, ~ � 1.6
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(b) multidimensional solvers, ~ � 1.6
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(c) ~ � 1.63
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(d) ~ � 1.0

Figure 5: Propagation of discontinuities at boundaries in the explicit cou-
pling of lumper parameter and finer (upper right) solvers for heat conduc-
tion for different values of ~with ∆t/τ2 � 1/100 and ∆t/τ1 � 1/10.
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4.1.2 Stability of a toy implicit coupling scheme

The iterative algorithm is described below. Given an initial boundary tem-

perature Tn+1,0
21 for domain Ω1, it iterates over k ≥ 0 with the following

steps :

1. Use an implicit solver in Ω1 to find the interface heat flux φn+1,k+1
12




φn+1,k+1
12 � λ1

6Tn+1
1 − 2T

b1
− 4Tn+1

12

e
1

in Ω1

ρ1Cp1e1

Tn+1
1 − Tn

1

∆t
� −φn+1,k+1

12
in Ω1

(34)

with continuity of temperature at the interface, i.e.

Tn+1
12 � Tn+1,k

21
on Γ12. (35)

2. Use an implicit solver inΩ2 to find the interface temperature T̃n+1,k+1
21




T̃n+1,k+1
21 � −1

4

e2

λ
2

φn+1
21 +

3

2
Tn+1

2 − 1

2
Tb2

in Ω2

ρ2Cp2e2

Tn+1
2
− Tn

2

∆t
� −φn+1

21 in Ω2

(36)

with continuity of heat flux at the interface, i.e.

φn+1
21 � −φn+1,k+1

12 on Γ12. (37)

3. Measure convergence level with

���T̃n+1,k+1
21 − Tn+1,k

21

���

Tn+1,k
21

≤ ǫrel. (38)

If the previous predicate is not satisfied, relax the interface tempera-
ture by

Tn+1,k+1
21

� ωT̃n+1,k+1
21

+ (1 − ω)Tn+1,k
21

(39)

and loop again. Otherwise, the final interface heat flux and temper-

ature are given by Tn+1
21

� Tn+1,k
21

and φn+1
12

� φn+1,k
12

. Consequently,

internal variables Tn+1
1

and Tn+1
2

can be fully implicitly calculated :
the iterative algorithm effectively allows to use implicit solvers for the
two domains while allowing to decouple the two domains.
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Combining eqs. (34) to (37), simple calculations lead to the following

equation giving the interface temperature iterates Tn+1,k
21

Tn+1,k+1
21

�

[

1 −
(

1 +

1 − 6∆t
τ2

1 + 6∆t
τ1

~

)

ω

]

Tn+1,k
21

+ g(Tn
1 , T

n
2 , Tb1

, Tb2
). (40)

We note Tn+1
21

the solution of the fixed point equation associated with the

previous equation and ek �

���Tn+1,k
21

− Tn+1
21

��� the error at iteration k. Then

iteration errors are given by equation

ek+1 �

�����
1 −

(

1 +

1 − 6∆t
τ2

1 + 6∆t
τ1

~

)

ω

�����
ek . (41)

Thus, the iterative algorithm converges toward the interface solutions, i.e.

Tn+1,∞
21 � Tn+1

21 and φn+1,∞
12 � φn+1

12 , if and only if

0 < ω <
2

1 +

���1−6 ∆t
τ2

���
���1+6 ∆t

τ1

���
~

�
2

1 + r12(∆t) . (42)

Note that when ∆t
τ1
≪ 1 and ∆t

τ2
≪ 1, condition eq. (42) reads

0 < ω <
2

1 + ~
. (43)

In cases where ~ > 1 for which the ECS diverges, the iterative algorithm
needs ω < 1, i.e. under-relaxation to converge, which might lead to slow
convergence.

Numerical evidence of stability. This analysis is confirmed by fig. 6. As in
section 4.1.1, both domains are at an equilibrium temperature of 2000 K and
the same discontinuities at boundaries are occurring at the same time t � 0+

and t � 3 τ1. For the computations, we still use ∆t/τ2 � 1/100, ∆t/τ1 �

1/10. We use ~ � 1.6 corresponding to the stability limit region for the ECS
(~ � ~crit

� 1.6) for which this scheme is showing constant oscillations. For
this value, the corresponding maximal value of ω to ensure convergence of
the iterative process is ω ≈ 1.03. The relative tolerance used is ǫrel � 10−4.
Several computations confirm the predicted behavior of the ICS : as long
as ω stays under the calculated maximum value 1.03, the ICS converges
toward the same smooth solution given by fig. 6a. Even for values ~ >
~crit, the ICS handles smoothly the fast dynamics and important transient
initiated by the instant propagation of the discontinuities at boundaries
in the two domains by the LP models. For cases where the ECS is not
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(a) ICS, ~ � 1.6
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(b) ECS, ~ � 0.625, ∆t ← ∆t/10
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(d) Schemes time of simulation, ~ � 1.6

Figure 6: Propagation of discontinuities at boundaries of lumper parameter
heat conduction coupled solvers solved with an ICS (upper left) and an ECS
(upper right) with much smaller coupling time step.

unconditionally unstable, i.e. r12(∆t) < 1, one way to achieve stability is to
reduce the coupling time step : fig. 6b shows an explicit coupling solution
with ~ � 0.625 < ~crit ≈ 1 and coupling time step ∆t reduced by a factor
of 10. However, while effectively reducing the oscillations, using an ECS
with such a small coupling time step leads to higher computational time.
The ICS allows to keep a sufficiently large coupling time step and a limited
number of iterations as shown in figs. 6c and 6d. In the last figure, it is
important to understand that only the solution given by the ECS with a
small coupling time step is usable but is costly to obtain while the solution
given with the ICS is good and costs 5 times less. For this problem, the
optimal relaxation parameter leading to the higher convergence rate can be
analytically calculated from eq. (41) and is given by ω � 1/(1 + r12(∆t)) ≈
0.52. However, most of the time the optimal relaxation parameter is highly
dependent to the problem.
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T21 ≥ T⋆

Ûm21 < 0

m2 ≤ mǫ ≈ 0

Figure 7: Internal states of domain Ω2 and their transition functions.

4.2 Synchronization on internal events

For instance, let us describe the state of domainΩ
2
into a graph of three states

as depicted in fig. 7 : Heating, Melting and Empty states. A state transition
occurs when a certain algebraic function is activated, e.g. Ûm21 < 0. As
explained section 3.2, each state has its own solver, its own set of equations
and its own interface and boundary conditions. State transitions can lead
to discontinuities of state or interface variables. For this case, equations of
solverMHeating are the ones described previously in section 4.1 while solver
MMelting continuous equations are given by




φ21 � λ1

6T2 − 4T21 − 2T
b2

e2

in Ω2

dm2

dt
� ρ2

de2

dt
� − Ûm21 in Ω2

ρ2Cp2e2

dT2

dt
� −φ21 in Ω2,

(44)

leading to a mobile fusion solidification front at interface Γ12 given by eqs. (4)

to (6) φ
12

� −φ
21

+ ∆H fus. Ûm
21

, Ûm
12

� − Ûm
21

and T
12

� T
21

� Tfus.. Again,

another set of internal and boundary equations are used for solverMEmpty

leading to a fixed interface given by eqs. (7) to (9) Ûm12 � − Ûm21 � 0, T12 �

T21, φ12 � −φ21.
Again, at t � 0−, both domains are at an equilibrium temperature of

T
1
� T

2
� T

21
� T

b1
� T

b2
� 2000 K. In particular, domain Ω

2
is in Heating

state. At t � 0+, T
b1

� 3000 K and T
b2

� 3000 K to force the Melting

state transition when T21 reaches T⋆ � 2100 K at time t⋆H→M. Once this
state has been reached, the second domain is in Melting state until only a
residual mass m2 � mǫ � 150 kg is left (corresponding to height e2 � 1.5
cm) and the Empty state is reached at time t⋆M→E. The computation then
stops when domainΩ1 reaches a near stationary state. In addition, all of the
computations use the value τ2 � 104 s, τ1 � 8 × 103 s and different values
for the time step ∆t. The chosen values ensure that the ECS is stable, i.e.
r12(∆t) < 1.0. Table 1 shows the times of the internal events of domain Ω

2
computed by the ECS and the ICS for several coupling time steps. Usually,
we ask the coupling time step to be bounded by

τ/10 � 800 s ≥ ∆t ≥ τ/100 � 80 s with τ � min (τ1 , τ2)
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∆t (s) 100 50 25 10 1

r12(∆t) < 1.0

ECS
m∞1 (kg) 1492 1413 1347 1260 1256 †
T∞

1
(K) 1710 1708 1705 1702 1700 †

ICS
m∞1 (kg) 1255 1255

T∞
1

(K) 1700 1700

ECS
t⋆H→M (s) 1700 1600 1600 1590 1584 †
t⋆

M→E
(s) 3200 3200 3150 3120 3117 †

ICS
t⋆
H→M

(s) 1583 1583

t⋆M→E (s) 3120 3117 3117 3116 3116

Table 1: Times t⋆H→M and t⋆M→E of domainΩ2 internal events and stationary
state m∞1 and T∞1 reached by domain Ω1. Reference solution marked with
†, solutions respecting the coupling time step constraint in blue, otherwise
in red.

for computational efficiency (in red and blue in the table). In comparison
to the reference solution (marked with †) given by the ECS for a small time
step ∆t � 1 s for which the scheme has converged, the ICS is able to predict
the state transition with high accuracy and adapt its time step to synchro-
nize both domains when the event occurs. However, the synchronization
mechanism of the ECS only allows the domains to be informed of an event
at the end of the time step. During this window of time, both domains are
in a non physical state, i.e. the domain Ω

1
is not aware of the disappear-

ance of the domain Ω2. This leads to numerical errors of order O(∆t) and
the numerical creation of either mass and/or energy leading to different
stationary states for the ECS. For a time step ∆t � 100 s respecting the con-
straint, the explicit solution leads to a relative error of 18% in term of mass.
Reducing the coupling time step to 10 s leads to a relative error of 0.3% but,
as seen previously, increases computational time. Besides, the ICS always
converges toward the reference solution and the right stationary state even
for large coupling time step.

This very simple example of coupling of LP models highlights the main
drawback of such lightweight modeling : deleting spatial dependency in
the equations force each model to instantly propagate all its data, e.g. its
discontinuities or its state transitions, thus creating high and important
transient or bringing the system in non physical states. Fixes are used to
bring back the system in a coherent state which should be avoided at all
cost. These phenomenons create numerical errors in the coupling which
can be measured in term of numerical energy created at the interface Γ12.
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We follow the same methodology as in [29]. The local variation of energy
∆En→n+1 at interface Γ12 between times tn and tn+1 is the sum of the energy

∆En→n+1
1 send by domainΩ1 through the interface and the energy∆En→n+1

2
send by domainΩ2 through the interface. For the continuous case in which
both domains are strongly coupled, the local variation of energy is null. It
is defined by equation

∆En→n+1
� ∆En→n+1

1 − (−∆En→n+1
2 )

�

∫ tn+1

tn

φ12 −
(∫ tn+1

tn

φ21 − ∆H fus. Ûm21

)

� 0.

The global energy ∆E0→n through interface Γ
12

is defined by

∆E0→n
�

n∑

k�0

∆Ek→k+1
� 0 (45)

and is also null in the continuous case. For each energy variation ∆E, we
define the relative energy

ǫ(∆E) � ∆E

E⋆
�

∆E

m2(t0)Cp2(Tfus. − T2(t0)) + ∆H fus.m2(t0)

by the ratio of the energy ∆E to the energy E⋆ needed to heat the initial
domain Ω2 to its fusion temperature (m2(t0)Cp2(Tfus. − T2(t0))) and to melt

it (∆H fus.m
2
(t0)). With the physical values used, we have E⋆ ≈ 108 J.

When discretized for the ECS, the local variation of energy becomes

∆En→n+1 ≈ φ12(tn+1)∆t −
(
φ21(tn) − ∆H fus. Ûm21(tn)

)
∆t

which emphasizes the “time-lag” between the two domains. Figure 8a
shows that the ECS can create locally 2.5% of E⋆, i.e. 2.5 106 J. Figure 8b
shows first that the global energy is not null and that terms of the sum
eq. (45) do not sum to zero. Besides, the explicit scheme can create globally
more than 6% of E⋆, i.e. 6 106 J which can have disastrous effects on the
whole accuracy.

For the ICS, the local variation of energy becomes

∆En→n+1 ≈ φ12(tn+1,∞)∆t −
(
φ21(tn+1,∞) − ∆H fus. Ûm21(tn+1,∞)

)
∆t

in which variables with superscript∞ represent the value reached when the
convergence criterion of the iterative scheme is satisfied. At convergence,
we can bound the residual at interface in such a way that
���φ12(tn+1,∞) −

(
φ21(tn+1,∞) − ∆H fus. Ûm21(tn+1,∞)

)���∆t ≤ ǫrel

��φ12(tn+1,∞)
��∆t.
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Figure 8: Relative local energy variation (left) and global energy variation
(right) at interface for the ECS

This allows us to bound the relative local energy at interface of the ICS with

��ǫ(∆En→n+1)
��
�

����
∆En→n+1

E⋆

���� ≤ ǫrel

��φ12(tn+1,∞)
��∆t

E⋆

and the relative global energy with

��ǫ(∆E0→n)
�� ≤

n∑

k�0

����
∆Ek→k+1

E⋆

���� ≤ n ǫrel

max
k

��φ12(tk+1,∞)
��∆t

E⋆
.

This shows that the imbalance of energy at interface of the ICS can be
controlled with the relative tolerance ǫrel. This is confirmed by numerical
experiments presented fig. 9a and fig. 9b showing respectively the relative
local and global energy at interface with a relative tolerance set to 10−4. The
maximum heat flux maxk

��φ
12
(tk+1,∞)

�� reached at the interface with unit
area is equal to ≈ 1.5 × 105 W.m−2 leading to a bound for the relative local
energy at interface of 1.5 × 10−3 (expressed in percent in fig. 9a).

5 Conclusion and perspectives

In this paper, we have presented problems of coupled LP models with
time management of state change events. In comparison to finer model-
ing approaches (e.g. mesh based modelings), this approach allows for fast
calculations which are needed when doing statistical studies with a large
number of calculations (e.g. design of computer experiments, Monte-Carlo
methods). This is typically the true industrial context of modeling and sim-
ulation of severe accidents in nuclear reactors. However, we have shown
that the LP modeling approach often leads to coupled problems with stiff,
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Figure 9: Relative local energy variation (left) and global energy variation
(right) at interface for the ICS

important and fast transients which are not suitable for being solved by
ECSs. Thus, ICSs were presented and designed for proper events detec-
tion and models synchronization allowing to obtain stable and accurate
solutions of coupled problems of lumped parameter models.

We proposed to study theoretically the numerical stability of ECSs and
ICSs on some of the interface equations used with LP models calculating the
heat conduction in coupled domains. From this short study we have learned
that Dirichlet-Neumann boundary conditions should be set up carefully in
order to ensure stability of the coupling schemes. However with industrial
constraints on the coupling time step to ensure fast calculations, ECSs re-
main very unstable and cannot be reasonable candidates in general cases to
give good and precise results. Besides, even the cheapest ICSs that only use
relaxation can give precise and stable calculations leading to trustworthy
results. They turn out ot be very interesting in term of computational times
in comparison to ECSs with a highly reduced coupling time step to ensure
stability. Furthermore, the designed ICSs are able to predict events and dis-
continuities in the coupled models allowing synchronization between them.
This tends to suggest that industrial problems of coupled lumped param-
eter models could substantially benefit from the use of implicit coupling
schemes.

In future developments, it would be worthwhile to add smartness to the
coupling scheme. For instance, depending on the strength of a coupling, i.e.
the value of the residual at interfaces, the coupling scheme sould be able to
choose between an ECS or an ICS to avoid using potentially costly iterative
scheme. Indeed, we have seen that such schemes can be optimized to ensure
fast calculations but this is still highly problem dependent. In particular this
can be very useful in the context of statistical studies where the experiments
are run into an automated process. Finally, if ICS are required to ensure
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proper stability of the computation but are still too costly, time parallelism
techniques like parareal methods [23] could be used.
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