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A B S T R A C T

In this work we propose a new 4-node DKMQ24 shell element based on Naghdi-Reissner-Mindlin shell theory
with 24 degrees of freedom. This new composite shell element, which is developed from DKMQ plate and shell
elements, takes into account shear deformation, coupled bending-membrane energy and warping effects. This
element has no spurious mode, passes patch tests for membrane, bending and shear problems. It has also suc-
cessfully passed standard benchmark tests in the case of thick and thin shells without membrane and shear
locking. In this paper, we extend the predictive capabilities of the DKMQ24 shell elements to composite lami-
nated plates and shell structures. Numerical results obtained from DKMQ24 are compared against state-of-the-
art shell elements. The results obtained by the proposed element converge more rapidly towards the reference
solution.

1. Introduction

An ideal shell element for composite structures should be capable of
modelling arbitrary shape of curved shell geometries and taking into ac-
count membrane, bending, couple membrane-bending and shear effects.
The element formulation should be simple, avoiding whenever possible
displacement derivatives as nodal variables, which require higher order
continuity. Finally, it should be able to satisfy the rigid body and constant
strain patch tests, be free of membrane and shear locking, as well as of
spurious internal modes, be easily combined with other element types and
able to provide accurate results for a coarse mesh.

The two main theories in shell analysis that are at our disposal for
the theoretical formulation are the Kirchhoff-Love [1] and Naghdi-Re-
issner-Mindlin [2–7]. The first theory is only valid for thin shells and
requires C1 continuity, which is not easy to achieve for standard finite
elements. For development of shell elements, it is thus easier to use the
second theory, which requires only C0 continuity. This theory, also
known as shear deformable theory, is by far more popular for structural
FEA (Finite Element Analysis).

The main challenge for low order Lagrange shell elements, based on
Naghdi-Reissner-Mindlin hypothesis, concerns severe membrane and
shear locking [8–11]. Locking cure has been an active domain of re-
search, where several different methods have emerged. The simplest
cure of reduced and selective integration techniques [12–22] can suc-
cessfully reduce the numerical locking. The excessive bending stiffness
of the fully integrated shell element is reduced, lowering the number of
Gauss points in the numerical integration of the membrane and

transverse shear terms. However, reduced and selective integration can
induce additional zero eigenvalues in the element stiffness matrix due
to spurious modes in addition to the rigid body modes.

A more efficient cure is ANS (Assumed Natural Strains) [23–26]
methods that exhibits better accuracy and robustness. The MITC4 (Mixed
Interpolation of Tensorial Components) method has been effectively
adopted for alleviating shear and membrane locking present in shell finite
elements. The 4-node shell element MITC4 has been widely used in en-
gineering practice due to its simple formulation and excellent performance
[27]. A 3-node MITC3 shell element also is proposed [28], and this de-
velopment is still being improved [29,30] with 3-nodes MITC3+ and
MITC4+ elements. The DSG (Discrete Shear Gap) method developed by
Bletzinger et al. to reduce shear locking [31] and the 3-node and 4-node
DSG shell elements were also proposed. When used for plates, the 4-nodes
DSG shell element formulation gives the MITC4 [27] element.

The development of 3-node DKT [32] and 4-node DKQ [33] ele-
ments for thick plate using ANS and Discrete Shear method to take into
account the shear strains was proposed by Batoz and Lardeur
[10,34,35]. These two elements rely on Reissner-Mindlin plate equili-
brium equations to account for shear effects. The first one, called DST
(Discrete Shear Triangular) [34], has 9 d.o.f and the second one, called
DSQ (Discrete Shear Quadrilateral) [35] has 12 d.o.f. The numerical
results of DST and DSQ elements converge towards those of DKT and
DKQ plate elements for thin plate problems. Unfortunately, these two
elements do not pass the patch test when applied to thick plate pro-
blem. To improve DST element, DST-BK has been proposed by Batoz
and Katili [36] using free formulation method and incompatible modes.
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The element passes the patch tests when applied to thin and thick
problems, and gives good and comparable results to DKT and DST.

A 4-nodes quadrilateral plate element called PQI with a set of in-
compatible modes is presented in [37–39]. In an analysis of thin plates, the
element exhibits a similar performance as the well-known DKQ element.
However, as opposed to the DKQ element, the element PQI can also be
used successfully in an analysis of thick plates. Katili [40,41] also in-
troduced DKMT and DKMQ elements to analyze thick and thin plate
problems. These elements are based on Reissner-Mindlin [6,7] hypothesis,
which requires only C0 continuity. In the case of thin plate problems, the
solutions obtained from DKMT element converge to DKT [32] element,
while the solutions obtained from DKMQ element converge to DKQ [33]
element. The problem of shear locking, when the thickness of the plate
decreases, is resolved using the Discrete Kirchhoff Mindlin method, as
proposed by Katili [40,41]. Therefore, DKMT and DKMQ elements are free
of shear locking and passed the associated classical patch tests. The ap-
plication of DKMQ plate element in stochastic finite element analysis,
error estimation and buckling analysis were presented in [42–44]. The
performance of DKMQ and DKMT plate element has been proved for thin
and thick plate problems including composite plates [45,46]. Others pa-
pers in finite element for composite plates are found in [47–51]. Following
the robustness of DKMQ plate element, 4-nodes DKMQ shell elements with
24 dof and 20 dof have been proposed [52–54].

A new development based on a modified Timoshenko beam theory
and modified Reissner-Mindlin plate theory approach has been pro-
posed recently for beam [55,56] and plate bending problems in iso-
geometric and finite element analysis [57–59]. Using unified and in-
tegrated (UI) approach [56,59], the total displacement is split into
bending displacement and shear displacement which causes the rota-
tions, curvatures and shear deformations can be defined as first, second
and third derivatives of bending displacement, respectively. The shear-
locking problem does not occur due to the strong interdependence
among the bending displacement and rotations.

The main objective of this work is to build on our previous work
[52] to study composite shell structures. The DKMQ24 shell element
take into account coupled bending-membrane energy and warping ef-
fects. The DKMQ24 element passes the classical patch tests in thick and
thin plate configurations, and the solutions converge quickly towards
the reference values without shear locking. In this paper, we present a
new development with DKMQ24 shell element for composite structures.

The paper is organized as follows. The geometry of shell element
explained in Section 2. The constitutive laws at the level of a single
laminate and at the stress resultant level are presented in Section 3 and
4, respectively. The shell kinematics for displacements and rotations are
explained in Section 5. Furthermore, Section 6 presents the formulation
of membrane deformation and curvatures strains, and Section 7 pre-
sents the assumed shear strain field. The element stiffness matrix in-
cluding fictitious stiffness is explained in Sections 8 and 9. The nu-
merical test results for composite plates and shells are shown in Section
10. In Section 11, we state the conclusions.

2. Geometric description of the DKMQ24 shell element

The geometry of the shell is defined with respect to a global Cartesian
coordinate system X, Y, Z (Fig. 1) with associated unit vectors ∼ ∼ ∼i j k, ,
(Fig. 2). This system defines the directions for the global displacements U,
V, W associated with the axes X, Y, Z, respectively. A nodal Cartesian
coordinate system formed by unit vectors ∼ ∼ ∼t t n, ,i i i1 2

is defined at each
node i on the reference surface (Fig. 2), see [11] for further detail.

The geometry of the shell is discretized by a mesh of quadrilateral
elements with 4-nodes, which are not necessary in the same plane [52].
The position vector ∼x p in the middle surface is continuous, but the
direction of normal vector ∼ni maybe discontinuous between two ad-
jacent elements. The vector ∼ni can be defined as the average of all the
normal vectors at node i, corresponding to the elements attached to
node i. This ensures geometric compatibility for coarse meshes and

folded shells.
The interpolation of a position vector ∼xq at an arbitrary point q is

expressed as a function of the parametric coordinate ξ, η, z with z the
thickness coordinate:

∼ = ∼ + ∼x z x z n(ξ,η, ) (ξ,η) (ξ,η)q p (1)

∑ ∑∼ = ∼ + ∼
= =

x z N x z N n(ξ,η, ) (ξ,η) (ξ,η)q
i

i i
i

i i
1

4

1

4

(2)

where:

∼x p is the position vector of an arbitrary point p in the middle surface
with z=0 in the global Cartesian coordinate system (X, Y, Z), which
is defined in (ξ, η, z= 0).

∼xq is the position vector of an arbitrary point q (Xq, Yq, Zq) in the
global Cartesian coordinate system, which is defined in (ξ, η, z≠ 0).

∼xi is the coordinate of an arbitrary nodal i (Xi, Yi, Zi) in the global
Cartesian coordinate system ∼ ∼ ∼i j k, , . Ni (ξ,η) is the shape function of
the quadrilateral element depending on the parametric coordinates
(ξ, η) in the reference element (Table 1). ∼ni denotes the normal di-
rection at the surface of the shell element node i (Fig. 1).

Fig. 1. Shell geometry represented by a set of quadrilateral elements.

Fig. 2. Geometry of DKMQ24 shell element.
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– Local basis at z= 0:
We define the covariant coordinate system by using the isopara-

metric coordinates for shell analysis. The relationship between differ-
ential elements in Cartesian and natural coordinates at point p can be
written as

∼ =
⎧
⎨
⎩

⎫
⎬
⎭
= ∼ ∼ ⎧

⎨⎩
⎫
⎬⎭

dx
dX
dY
dZ

a a d
d

[ ]
ξ
ηp 1 2

(3)

Vectors ∼a1 and ∼a2 are tangential vectors in direction ξ and η. In
general ∼a1 and∼a2 are not orthogonal, and they are used to construct the
covariant basis. Vectors ∼a1 and ∼a2 (Fig. 2) are given by

∑ ∑∼ = ∼ = ∼ ∼ = ∼ = ∼
= =

a x N x a x N x;p
i

i i p
i

i i1 ,ξ
1

4

,ξ 2 ,η
1

4

,η
(4)

where N Nandi i,ξ ,η are the first derivatives of the shape functions Ni with
respect to ξ and η. The convention in this paper for f,ξ will denote the
partial derivative of function f with respect to ξ.

The local basis at z=0, denoted [F0], is written as:

= ∼ ∼ ∼
= ∼ × ∼ ∼ ∼ =

∼ ×∼
∼ ×∼

F a a n

det F a a n n

[ ] [ ]

[ ] ( ). ;

o

o
a a
a a

1 2

1 2 | |
1 2

1 2 (5)

The length ds on the surface is classically given by:

= ∼ ∼ = 〈 〉 ⎧
⎨⎩

⎫
⎬⎭

ds dx dx d d a
d
d

( ) . ξ η [ ]
ξ
η

2

(6)

We denote by [a] the metric tensor in the middle surface. It is a
symmetric (a12 = a21), positive-definite matrix defined as:

= ⎡
⎣

⎤
⎦
= ⎡
⎣⎢
∼ ∼ ∼ ∼
∼ ∼ ∼ ∼

⎤
⎦⎥

= > > >

a
a a
a a

a a a a
a a a a

a det a a a det a

[ ]
. .
. .

[ ]; 0 ; 0; [ ] 0

11 12
21 22

1 1 1 2

2 1 2 2

11 22 (7)

The area of element ∼dA expressed as:

∼ = ∼ × ∼ = ∼ × ∼ ∼dA a d a d a a d d nξ η | | ξ η1 2 1 2 (8)

∼ ∼ ∼ =dA = a d d n = dA n dA a d dξ η ; ξ η (9)

To simplify the calculations, we introduce the vectors ∼a
1 and ∼a

2

which are the classical contravariant vectors (Fig. 3). We recall that
contravariant vectors satisfy:

∼ ∼ = ∼ ∼ = ∼ ∼ = ∼ ∼ =a a a a a a a a. . 1 ; . . 01
1

2
2

1
2

2
1

The inverse matrix −F[ ]o
1, with =−F F I[ ] [ ] [ ]o o

1 , can be written as

= ∼ ∼ ∼ ∼ ∼ = ∼ ∼
− −F a a n a a a a a[ ] [ ] and [ ] [ ][ ]o

T 1 2 1 2
1 2

1 (10)

The contravariant base vectors ∼a
1 and ∼a

2 are given by:

∼ = ∼ − ∼ ∼ = − ∼ + ∼a
a

a a a a a
a

a a a a1 ( ) ; 1 ( )1
22 1 12 2

2
21 1 11 2 (11)

The relationship (3) can also be written in compact notation:

⎧
⎨⎩

⎫
⎬⎭
= ⎡
⎣⎢
〈 〉
〈 〉

⎤
⎦⎥
⎧
⎨
⎩

⎫
⎬
⎭

d
d

a
a

dX
dY
dZ

ξ
η

1

2
(12)

The covariant and contravariant systems are important for

developing consistent expressions for the shell curvatures and the
equilibrium equations in shell theory. The relation of differential cal-
culation between global coordinate X, Y, Z and local coordinates system
x, y, z can be written (Fig. 4) as:

⎧
⎨
⎩

⎫
⎬
⎭
=

⎧
⎨
⎩

⎫
⎬
⎭

dX
dY
dZ

Q
dx
dy
dz

[ ]
(13)

where:

= ∼ ∼ ∼
∼ = ∼ × ∼ ∼ = ∼ × ∼ ∼ = ∼ ∼ = ±∼

Q t t n
t n k t n t t i n k

[ ] [ ]
; ; if

1 2

1 2 1 1 (14)

Relationships (12) and (13) become

⎧
⎨⎩

⎫
⎬⎭
= ⎧

⎨⎩
⎫
⎬⎭

= ⎡
⎣⎢

⎤
⎦⎥
= ⎡

⎣
⎢
∼ ∼ ∼ ∼
∼ ∼ ∼ ∼

⎤

⎦
⎥

d
d

C dx
dy

C
C C
C C

a t a t
a t a t

ξ
η

[ ] and

[ ]
. .
. .

o

o
o o

o o
11 12

21 22

1
1

1
2

2
1

2
2 (15)

– Local Basis at z≠ 0:
The local basis [Fz] at z≠ 0 at an arbitrary point q outside of shell

Table 1
Linear function Ni and quadratic function Pk.

= − −N (1 ξ)(1 η)1
1
4

= − −P (1 ξ )(1 η)5
1
2

2

= + −N (1 ξ)(1 η)2
1
4

= + −P (1 ξ)(1 η )6
1
2

2

= + +N (1 ξ)(1 η)3
1
4

= − +P (1 ξ )(1 η)7
1
2

2

= − +N (1 ξ)(1 η)4
1
4

= − −P (1 ξ)(1 η )8
1
2

2

Fig. 3. Covariant and contravariant basis.

Fig. 4. Local coordinate system x, y, z and global coordinate system X, Y, Z.
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mid-surface can be written as:

= ∼ ∼ ∼ = +

= ∼ ∼ ∼ = +

F a a n F z F

F n n F F I z b

[ ] [ ] [ ] [ ] where

[ ] [ , , 0] ; [ ] [ ]([ ] [ ])
z z z n

n z n

1 2 0

ξ η 0 (16)

With [I] as the identity matrix, and

=

=
⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥
=
⎡

⎣

⎢
⎢

∼ ∼ ∼ ∼
∼ ∼ ∼ ∼

⎤

⎦

⎥
⎥

−b F F

b
b b
b b

a n a n
a n a n

[ ] [ ] [ ] or

[ ]
0
0

0 0 0

· , · , 0
. , · , 0
0 0 0

n n

n

n n

n n

0
1

1
ξ

1
η

2
ξ

2
η

11 12

21 22

(17)

If the four nodes in an element are coplanar, then the matrix [bn]
has a zero column because ∼n is constant in this element.

3. Constitutive laws

In local Cartesian coordinate systems (x, y, z), we can write the
constitutive laws for in-plane stresses in each laminate as:

= H{σ} [ ]{ε} (18)

where in-plane stresses are:

= 〈 〉{σ} σ σ σx y xy T (19)

and membrane strain and curvatures are

= +
= 〈 〉 = 〈 〉

e z
e e e e

{ε} { } {χ}
{ } ; {χ} χ χ χx y xy T x y xy T (20)

The relation between out-off-plane shear stress and shear strain can
be written as:

= = 〈 〉 = 〈 〉G{τ} [ ]{γ} ; {τ} τ τ and {γ} γ γx y T x y T (21)

In the composite laminated shell structures, the material is formed
by orthotropic layers with orthotropic axes L-T-Z and isotropic in the
plane TZ (Fig. 5). The L axis defines the direction of the longitudinal
fibres which are embedded in a matrix of polymeric or metallic mate-
rial. Each layer satisfies the plane stress assumption (σz=0). In each
layer, the constitutive relationships in the orthotropic axes (L-T-Z) are:

= =σ H ε τ G{ } [ ]{ } ; { } [ ]{γ }L L L L L L (22)

where:

〈 〉 = 〈 〈 〉 = 〈 〉
〈 〉 = 〈 〈 〉 = 〈 〉ε
σ σ σ σ ; τ τ τ
ε ε 2ε ; γ γ γ

L L T LT L LZ TZ

L L T LT L LZ TZ (23)

=
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

= ⎡
⎣⎢

⎤
⎦⎥

H
H H

H
sym G

G
G

G[ ]
0
0 ; [ ]

0
0L

LL LT

TT

LT

L
LZ

TZ
(24)

= =

= =
− −

−

H H

H E E

;

; υ υ

LL
E

TT
E

LT
E

T LT L TL

(1 υ υ ) (1 υ υ )
υ

(1 υ υ )

L
LT TL

T
LT TL

L TL
LT TL (25)

The five independent coefficients can be either

=

=

= = +( )
( )

H H H G G G

E E

G G G G

, , , , or

, , υ or υ with υ ,

, or υ with

LL LT TT LT LZ TZ

L T LT TL LT
E υ

E

LT LZ TZ TZ TZ
E

2(1 υ )

T TL
L

T
TZ (26)

where EL is the Young modulus in the fibre direction and ET is the
Young modulus in the transverse direction to the fibre, υLT and υTL are
the Poisson ratios in the L-T plane of orthotropic layer. The constitutive
parameters in matrices [HL] and [GL] can be measured experimentally.
The orthotropic directions L and T can vary from layer to layer, and are
represented by angle θ between the local axis x and the directions Li of
the i-th layer (Fig. 5). The matrix transformation from orthotropic to
local Cartesian coordinates can be written as

=
⎡

⎣

⎢
⎢
⎢

−
− −

⎤

⎦

⎥
⎥
⎥

= ⎡
⎣⎢−

⎤
⎦⎥

= =

R
C S C S
S C C S
C S C S C S

R
C S
S C

C S

[ ]
2 2

and: [ ]

where: cos θ; sin θ

L

L

1

θ
2

θ
2

θ θ

θ
2

θ
2

θ θ

θ θ θ θ θ
2

θ
2

2
θ θ

θ θ

θ θ (27)

=
=

H R H R
G R G R
where: [ ] [ ] [ ][ ]
[ ] [ ] [ ][ ]

L
T

L L

L
T

L L

1 1

2 2 (28)

The last result can be simplified for the isotropic material

=
⎡

⎣
⎢
⎢ −

⎤

⎦
⎥
⎥

= ⎡
⎣

⎤
⎦

−

+

H

G

[ ]
1 υ 0
υ 1 0
0 0 (1 υ)/2

[ ] 1 0
0 1

E

E

1 υ

2(1 υ)

2

(29)

where E is the Young modulus of elasticity, G is the shear modulus, υ
the Poisson ratio.

4. Stress resultants

The stresses resultants are integral of the local Cartesian stress
component τ τσ , σ , σ , andx y xy x y and given by:

∫ ∫

∫

= =

=
−
+

−
+

−
+

N dz N dz

N dz

σ ; σ

σ

x h
h

x y h
h

y

xy h
h

xy

/2
/2

/2
/2

/2
/2

(30)

∫ ∫

∫

= =

=
−
+

−
+

−
+

M z dz M z dz

M z dz

σ ; σ

σ

x h
h

x y h
h

y

xy h
h

xy

/2
/2

/2
/2

/2
/2

(31)

∫ ∫= =
−

+

−

+
T dz T dzτ ; τx h

h
x y h

h
y/2

/2

/2

/2

(32)

Where h is the shell thickness. The constitutive equations for the
membrane forces, bending moments and shear forces, obtained from
(18)–(32), are given by:

⎧

⎨
⎩

⎫

⎬
⎭

=
⎧
⎨
⎩

⎫
⎬
⎭
+

⎧
⎨
⎩

⎫
⎬
⎭

⎧

⎨
⎩

⎫

⎬
⎭

=
⎧
⎨
⎩

⎫
⎬
⎭
+

⎧
⎨
⎩

⎫
⎬
⎭

⎧
⎨⎩

⎫
⎬⎭
= ⎧

⎨⎩
⎫
⎬⎭

N
N
N

H
e
e
e

H

M
M
M

H
e
e
e

H

T
T H

[ ] [ ]
χ
χ
χ

[ ] [ ]
χ
χ
χ

[ ]
γ
γ

x

y

xy

m

x
y

xy
mb

x

y

xy

x

y

xy

mb

x
y

xy
b

x

y

xy

x

y
s

x

y (33)

For composite structures, the stress resultant constitutive equations
are obtained by summing up over different layers. We thus obtain the
stress resultant elasticity matrix for membrane and bending parts along
with the membrane-bending coupling term due to non-symmetry of theFig. 5. Orthotropic layer.
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composite shell, which are denoted as [Hm], [Hb], [Hmb] and [Hs] ma-
trices (see Fig. 6).

Membrane constitutive matrix:

=
⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥
= ∑

= −

=

+

H
H H H

H H
Sym H

H h

h z z

[ ]
.

[ ]

( )

m

m m m

m m

m

i
nl

i i

i i i

1

1

11 12 13

22 23

33

(34)

Bending constitutive matrix:

∑=
⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥
= −

=
+H

H H H
H H

Sym H
H z z[ ]

.

1
3

[ ] ( )b

b b b

b b

b i

nl

i i i
1

1
3 3

11 12 13

22 23

33 (35)

Coupled membrane-bending constitutive matrix:

=
⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥
= ∑

= − = +

=

+ +

H
H H H

H H
Sym H

H h z

h z z z z z

[ ]
.

[ ]

; ( )

mb

mb mb mb

mb mb

mb

i
nl

i i i

i i i i i i

1
2 1

1
1
2 1

11 12 13

22 23

33

(36)

where hi is the layer thickness.
If the material properties and the laminate orientations are sym-

metric with respect to the middle surface, [Hmb] is zero and the middle
surface xy is a neutral surface. Middle surface xy then coincides with
the neutral surface and the membrane and bending effects are un-
coupled. This means that in-plane forces acting on neutral surface do
not produces any curvatures and, conversely, bending moments do not
produce any membrane strain.

Shear constitutive matrix:

= ⎡

⎣
⎢

⎤

⎦
⎥ = ∑

= −

=

+

H
H H
Sym H

G h

h z z

[ ]
.

[ ]

( )

s
s s

s
i
nl

i i

i i i

1

1

11 12

22

(37)

where nl is the number of layers in the structures. [H]i is the in-plane
constitutive matrix for i-th layer and [G]i is the out-of-plane constitutive
matrix for i-th layer. They are defined in (28) for orthotropic material
and in (29) for isotropic material. Matrix [Hs] is defined so that the
shear strain energy density obtained for an exact 3D distribution of the
transverse shear stresses τx and τy is identical to the shear energy as-
sociated with the Naghdi-Reissner-Mindlin plate model. The require-
ment that the transverse shear stiffness of the shell model should cor-
respond as much as possible with respect to the one from 3D analysis is
met by using the modified constitutive matrix [Hs] for the shear forces
(37) which can be written as

= ⎡

⎣
⎢

⎤

⎦
⎥H

κ H κ H
Sym κ H

[ ]
. .

. .s
s s

s

11 12

22

11 12

22 (38)

where κ11, κ12, κ22 are the transverse shear correction parameters.
For isotropic material, we can simplify these constitutive matrices.

The matrix [Hm], [Hb] and [Hs] are then given by:

=
⎡

⎣
⎢
⎢ −

⎤

⎦
⎥
⎥

=
−

H D D Eh[ ]
1 υ 0
υ 1 0
0 0 (1 υ)/2

;
(1 υ )m m m 2

(39)

=
⎡

⎣
⎢
⎢ −

⎤

⎦
⎥
⎥

=
−

H D D Eh[ ]
1 υ 0
υ 1 0
0 0 (1 υ)/2

;
12(1 υ )b b b

3

2
(40)

=H[ ] [0]mb (41)

= ⎡
⎣

⎤
⎦

=H D D Gh[ ] 1 0
0 1 ; κs s s (42)

For the isotropic material we typically chose κ=5/6, which is
computed as the transverse shear correction parameters of (38) based
on considerations of static equivalences [10].

5. Kinematics of DKMQ24 shell element

There are 24 degrees of freedom on each element, three displace-
ments and three rotations at each node i ( )U V W, , , θ , θ , θi i i X Y Zi i i in the
global coordinates system (Fig. 7).

For the approximation of displacement in the middle surface,

∼u (ξ,η)p , the element uses a linear function. For the interpolation of
rotations ∼β (ξ,η), DKMQ24 uses an incomplete quadratic polynomial.
The displacement of point outside mid-surface∼uq can then be written as
[52]

∼ = ∼ + ∼ ∼ ∼ =u z u z n(ξ,η, ) (ξ,η) β (ξ,η) with: β· 0q p (43)

where mid-surface displacement is bi-linear:

∑∼ =
⎧
⎨
⎩

⎫
⎬
⎭=

u N
U
V
W

(ξ,η) (ξ,η)p
i

i

i

i

i1

4

(44)

The rotation approximation for
∼β

is incomplete bi-quadratic func-
tion.

∼ = ∑
∼
+ ∑ ∼

∼
= ∼ × ∼ ∼ = =

= =

∼ ∼ −∼

N P t

n t

β (ξ,η) (ξ,η) β (ξ,η) Δβ

β θ ;

i i i k k s s

i i i s

x

L

x x

L

1
4

5
8

( )
k k

k k

j i

k

ji

(45)

Fig. 6. Definition of layer in composite laminated shell.

Fig. 7. Nodal degrees of freedom for DKMQ24 shell elements.
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∑ ∑∼ =
⎧

⎨
⎩

⎫

⎬
⎭

+ ∼
= =

N RN P tβ [ ]
θ
θ
θ

Δβ
i

i i

X

Y

Z k
k s s

1

4

5

8i

i

i

k k

(46)

= =
⎡

⎣
⎢
⎢

−
−

−

⎤

⎦
⎥
⎥

RN RN RN RN
n n

n n
n n

[ ] [{ 1} { 2} { 3} ]
0

0
0

i i i i

Zi Yi

Zi Xi

Yi Xi (47)

where Ni is a linear function and Pk is a quadratic function (see Table 1);
Δβsk (k=5, 6, 7, 8) is a supplementary degree of freedom on each side
of the element, which represents a hierarchical rotation with respect to
the average of βsi and βsj in the middle of each side (Fig. 8), Lk is the
length of side i-j.

The rotation components βs and βm are defined according;

= ∼ ∼ = ∼ ∼ ∼ = ∼ ∧ ∼t t t t nβ β· ; β β· ;s s m m m s kk k k k (48)

where ∼ ∼t tands mk k
(k=5, 6, 7, 8) are the unit vector tangential and

normal to the side of k (Fig. 9). We note the rotation βs (in the plane z-s,
where s is the tangential coordinate on the considered side of i-j) is a
quadratic function with respect to s. The rotation component βm (in the
plane z-m where m is perpendicular to s and ∼n) is a linear function in s
(Fig. 8). For example, along the side of i-j, we have

= − + + −

= − +

( ) ( )
( )

β 1 β β 4 1 Δβ

β 1 β β

s
s

L s
s

L s
s

L
s

L s

m
s

L m
s

L m

k i k j k k k

k i k j (49)

6. Approximation of membrane strains and curvatures

We take from [52] the approximation for membrane strains which
can be written as

=
⎧
⎨
⎩

⎫
⎬
⎭
=
⎡

⎣
⎢
⎢

∼

∼
∼
∼

⎤

⎦
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⎧
⎨⎩
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∼

⎫
⎬⎭

e
e
e
e

t

t
t
t

C
u
u{ } 0

0
[ ]

x
y
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o T p

p

1

2

2

1

,ξ

,η
(50)

By introducing (44) into (50), we get:

=e B u{ } [ ]{ }m n (51)

= … …
=u U V W{ } θ θ θn i i i X Y Z i

T
1,4i i i (52)

and

= ⋯ ⋯

=
⎡

⎣

⎢
⎢

〈 〉
〈 〉

〈 〉 + 〈 〉

⎤

⎦

⎥
⎥

=B B

B
t N
t N

t N t N

[ ] [ [ ] ]

[ ]
0 0 0
0 0 0
0 0 0

m m i i
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i x
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1,4

1 ,

2 ,

1 , 2 , (53)

= +
= +

N N C N C
N N C N C

i x i
o

i
o

i y i
o

i
o

, ,ξ 11 ,η 21

, ,ξ 12 ,η 22 (54)

The approximation for components of the curvature tensor is given
by:

=
⎧
⎨
⎩

⎫
⎬
⎭
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⎡

⎣
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⎢

∼

∼
∼
∼

⎤

⎦
⎥
⎥
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By introducing (44)–(48) into (55), we get

= +B u B{χ} [ ]{ } [ ]{Δβ }b n b nβ Δβ (56)

where

〈 =〈Δβ Δβ Δβ Δβ Δβn s s s s5 6 7 8 (57)

= ⋯ ⋯
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⎡
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⎢
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(58)

〈 〉 = ∼ ∼ ∼ ∼ ∼ ∼
〈 〉 = ∼ ∼ ∼ ∼ ∼ ∼

V t RN t RN t RN
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· · ·

· · ·
i

i

1 1 1 1 2 1 3

2 2 1 2 2 2 3
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= + = +Nbc N bc N bc Nbc N bc N bc1 ; 2i i ξ i η i i ξ i η, 11 , 21 , 12 , 22 (60)
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⋯
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(61)

= + = +P P C P C P P C P C;k x k
o

k
o

k y k
o

k
o

, ,ξ 11 ,η 21 , ,ξ 12 ,η 22 (62)

From [52] we have:

̂

̂
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⎤
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=
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21 11

2
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1
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2
,ξ

1
,ξ (63)

We can see that there is a coupling between bending and membrane
for the curvature strains equations in (58). This happens if the four
nodes in the element are not coplanar ≠bc[ ] [0]. If the four nodes in an
element are coplanar, then the matrix =bc[ ] [0] (because ∼n is constant
for this element). In this situation the formulation will give the same
results as with the flat shell model.

7. Assumed shear strain fields for DKMQ24

The key point of formulation for shear locking free in the case of
composite shell structures is the choice of the assumed shear strain
field. We briefly present the assumed strain fields used in the DKMQ24
shell element. The main reason for that concerns the importance of
shear deformation with respect to the risk of shear failure inFig. 8. Variation of rotation βm and βs along the sides of DKMQ24 shell element.

m

1

2

3

4
s

z

6n

6st

6mt

2n

3n

5

8

7

6

Fig. 9. Tangential unit vector on side i-j.
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composites. Shear strain field is approximated independently of dis-
placement and rotations in the spirit of assumed shear strain. Due to the
element curvature, it is convenient to express the assumed shear strain
field in the covariant components γ and γξ η, and then transform the
resulting expressions to the local coordinate system.

The definition of the assumed shear strain field {γ} follows similar
arguments to that for our plate and shell elements [41,52]. Namely
given construction in the covariant system, we obtain the corre-
sponding approximation in the local Cartesian system.

= ⎧
⎨⎩

⎫
⎬⎭
= ⎧

⎨⎩
⎫
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= ⎡
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C C
C C

{γ}
γ
γ [ ]

γ
γ
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y
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o o
ξ

η

11 12

21 22

ξ

η (64)

Following the choice in [41,52], we take covariant shear component
approximation
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8 (65)

where γ ,γ ,γ ,γξ5 η6 ξ7 η8 denote the natural shear strains at the mid-points
of the element sides 5,6,7,8. On the other hand, we can replace these
covariant components with the corresponding physical components
simply by using the correct metric for each element side

⎧
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With the results (64)–(66) on hand, we obtain:

=

=
[ ]B

B C N A

{γ} {γ }

[ ] [ ] [ ][ ]
s s

s
o T

γ γ

nγ

γ (67)

Thus the assumed independent shear strain γs on side-k (k=5, 6, 7,
8) (Fig. 10), can be expressed as:

= −γ 2
3

ϕ Δβs k sk k (68)

where the coefficient ϕk can be obtained for either orthotropic material
[45]
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where Lk is the length of the side k, and
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where [ ]Rk1 and [ ]Rk2 are given by:
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⎡
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or for an isotropic material [41]

⎜ ⎟= =
−
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D
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ϕ 12 2
κ(1 υ)k

b

s k k
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2 (72)

The factor ϕk, characterizing the influence of shear, maintains the

consistency of the proposed element. The factor ϕk in the above equation
precisely explains why DKMQ24 element behaves as either Reissner-
Mindlin theory for thick shell or as Kirchhoff-Love theory for thin shell. In
the thin shell problems, where factor ϕk is close to zero, shear deformation
is automatically reduced. Accordingly, as the main positive result, the
shear locking is automatically resolved by this Discrete Kirchhoff Mindlin
method. Applying the same procedure systematically on all sides of the
proposed shell element, from Eq. (68) we get [41,52]
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(73)

Finally, combining (67) and (73) we obtain:

= ⎧
⎨⎩

⎫
⎬⎭
= [ ]B A{γ}

γ
γ [ ]{Δβ }x

y
s nϕγ

(74)

8. Variational principal and shell element stiffness matrix

The modified Hu-Washizu functional is used as the appropriate
framework to develop our DKMQ24 shell element. We only briefly re-
call the modified Hu-Washizu principle, whose details can be found in
Refs. [60,61]. The Hu-Washizu principle for shell can be written as:

= −Π Π Πint ext (75)

= + + +Π Π Π Π Πint int
m

int
b

int
mb

int
s (76)

∫= wf dAΠext A z (77)

where fz is the distributed load in the z direction, Π ,Π ,Π and Πint
m

int
b

int
mb

int
s

are respectively, membrane, bending, coupled membrane-bending and
shear strain energy. The latter is the main reason why we need the Hu-
Washizu formulation to define the assumed shear strain which reads

∫ ∫= < > + < > −H dA T dAΠ 1
2

γ [ ]{γ} ({γ} {γ})int
s

A s A (78)

By computing the variation of Πint
s with respect to T (shear force),

we get the following orthogonality condition:

∫ 〈 〉 − =T dAδ ({γ} {γ}) 0
A (79)

This equation can be viewed as a constraint equation to be imposed
on each element edge:

Fig. 10. Constant assumed shear strain on side i-j.
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∫ − = =T ds kδ (γ γ ) 0 ; 5,6,7,8
L

s s s0

k
k k k (80)

From (80) we can defined the kinematic relationships between the
assumed shear strain γs as a constant on each sides and γsk

according to

∫= =
L

ds kγ 1 γ ; 5,6,7,8s
k

L
s0k

k

k (81)

where

= ∼ ∼ + ∼ ∼u n tγ . β ·s p k sk s k, (82)

By introducing (82) into (81), we have

∫= ∼ ∼ + ∼ ∼L
u n t dsγ 1 ( · β · )s

k 0

L
p k sk

k

s k, (83)

where ∼nk is the unit exterior normal vector on the corresponding side k
of the element. On each side-k, we obtain those normal vectors by
averaging the nodal values

∼ = ∼ + ∼n n n1
2

( )k i j (84)

By introducing (68) into (83), we obtain
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Moreover, from (44) to (49) we have
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Finally, from (85) and (86), we have:
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With transformation in (87) applied on all four sides, the in-
dependent parameter {Δβ }n becomes a function of degrees of freedom
{un}; namely

= −A A u{Δβ } [ ] [ ]{ }n u nΔ
1 (88)

where:
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Substituting (88) into (56) we obtain the final expression of the
curvature

=
= + −

B u
B B B A A

{χ} [ (ξ,η)]{ }
[ (ξ,η)] [ (ξ,η)] [ (ξ,η)][ ] [ ]

b n

b b b uΔ
1

β Δβ (90)

Substituting (88) into the expression of transversal shear strain
deformation (74), we obtain:
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When h≪ Lk, it can easily be seen from the last result that ϕk be-
comes very small and consequently:

- Matrix A[ ]Δ and bending energy for DKMQ24 will be equal with
DKQ24 element in Ref. [62], therefore there is no shear locking for
thin shell.

- Matrix ≈A[ ] [0]ϕΔ and shear energy becomes zero, and the DKMQ24
element will converges to DKQ24 element in Ref. [62].

When h≫ Lk, it can easily be seen that ϕk becomes very large and
consequently:

- Matrix ≈−A[ ] [0]Δ
1 and ≈{Δβ } {0};n therefore, the bending strain

matrix B[ ]b from (90) for DKMQ24 element will be almost identical
to the bending strain matrix of Q4γ24 [11,52] element equivalent of
MITC4 [27].

- Matrix ≈A I[ ] [ ],ϕΔ therefore, the shear strain matrix B[ ]s defined in
(91) for DKMQ24 element will be almost identical with the shear
strain matrix for the Q4γ24 [11,52] element equivalent of MITC4
[27].

- For plates, DKMQ24 gives the same results as DKMQ [41] plate
bending element and converges to MITC4 plate bending element
[63].

For an element with the area A, the membrane strain energy (76)
can be written as

∫= 〈 〉 = 〈 〉e H e dA u k uΠ 1
2

[ ]{ } 1
2

[ ]{ }int
m

A m n m n (93)

where

∫=k B H B dA[ ] [ ] [ ] [ ]m A m
T

m m (94)

In a similar way, the bending deformation energy (76) for an ele-
ment with the area A is given by

∫= 〈 〉 = 〈 〉H dA u k uΠ 1
2

χ [ ] {χ} 1
2

[ ] { }int
b

A b n b n (95)

leading to the bending part of the proposed shell element stiffness

∫=k B H B dA[ ] [ ] [ ] [ ]b A b
T

b b (96)

The membrane-bending coupling effects energy (76) for an element
with the area A is given by

∫ ∫= 〈 〉 + 〈 〉

= 〈 〉 +

e H dA H e dA

u k k u

Π [ ]{χ} χ [ ]{ }

Π ([ ] [ ] ){ }

int
mb

A mb A mb

int
mb

n mb mb
T

n

1
2

1
2

1
2 (97)

leading to the coupling term of the shell element stiffness

∫=k B H B dA[ ] [ ] [ ] [ ]mb A m
T

mb b (98)

Finally, transversal shear strain energy (76) for an element with the
mid-surface area A is:

∫= 〈 〉 = 〈 〉H dA u k uΠ 1
2

γ [ ] {γ} 1
2

[ ] { }int
s

A s n s n (99)

which allows us to define the shear term of the shell element stiffness
matrix
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∫=k B H B dA[ ] [ ] [ ] [ ]s A s
T

s s (100)

In summary, the stiffness matrix [k] is the assembly of the stiffness
matrices due to membrane, bending, coupled membrane-bending and
transversal shear.

= + + + +k k k k k k[ ] [ ] [ ] [ ] [ ] [ ]m b mb mb
T

s (101)

The stiffness matrix is determined using the Gauss numerical in-
tegration. The standard Gauss integration rule with 2× 2 points is
enough to integrate the stiffness matrix (94), (96), (98) and (100) with
satisfying accuracy.

9. Fictitious stiffness and MacNeal stabilization

In the field of shell kinematic, there is no rotation around the normal
axis (θz). Therefore the stiffness matrix [k] (101) will contain the value
zero at the slots for nodal variables θ .zi As a result, it will arise four
spurious modes in shell element stiffness matrix. If all elements are placed
into a plane that results with all nodes coplanar, the stiffness matrix will
have a spurious mode with respect to rotations around normal to the shell
(so called drilling rotations [64]). Therefore, to avoid the difficulties
dealing with spurious modes, we use a fictitious stiffness. With the addi-
tion of fictitious stiffness, three spurious modes will vanish, while the
other spurious mode will be eliminated by MacNeal stabilization [52].

= + +Π Π Π Πint int int int
θ θz z (102)

We define a fictitious stiffness:

∫= +

= 〈 〉

−H dA

k

Π 10 (θ θ θ θ )

Π θ [ ]{θ }

int LL A z,x z x z y z y

int n n

θ 1
2

3
, , ,

θ 1
2 θ

z

z
z (103)
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i (104)

where:

< > = = ⋯ ⋯ =θ {θ } θ θ θn n
T

X Y Z i 1,4i i i (105)

⎧
⎨⎩

⎫
⎬⎭
= ⎧

⎨⎩
⎫
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C
θ
θ

[ ]
θ
θ

z x

z y

o T z

z

,

,

,ξ

,η (106)

Matrix ×[ ]kθ 12 12z is expanded into matrix ×[ ]kθ 24 24z to adjust the
nodal variables in the element stiffness matrix.

We define a fictitious stiffness according to Mac Neal stabilization,

terms leading to:

∫= = 〈 〉− −G dA u k uΠ 1
2

10 (θ ·θ ) 1
2

[ ]{ }int
z

LT A z z n n
θ 3

θz (107)

where we used a small arbitrary factor of stabilization of 10−3 that will
not affect the results but will enable to avoid singularities. The final
form of the stiffness matrix is:

= + + −[ ] [ ] [ ] [ ]k k k kθ θz z (108)

In this format, it is important to notice that matrix ×[ ]kθ 12 12z is ex-
panded into matrix ×[ ]kθ 24 24z to adjust the nodal variables in the ele-
ment stiffness matrix. Therefore, the rank of matrix [ ]kθz is three and
rank of matrix [ ]kθz is one. The addition of small fictitious stiffness [ ]kθz

and [ ]kθz will not affect the precision and the rate of convergence.
Matrix [ ]kθz eliminates the numerical singularity in the element when
the four nodes are coplanar. Finally, the DKMQ24 element has
rank= 18, with 6 rigid body modes without any spurious mode and
without any spurious constraint when the four nodes are coplanar.

10. Numerical simulations

To validate our new DKMQ24 shell element for composite struc-
tures, we will use the tests proposed by Srinivas [65] and Pagano and
Hatfield [66,67] for plate problems. Moreover, for composite shell
problems we consider the test proposed by Varadan and Bhaskar [68],
along with a new hyperbolic paraboloid shell test.

The convergence of finite element formulation generally is measured
by using the displacements or stresses at one point of the structures as a
function of mesh refinement. But is better to consider, the method called s-
norm, proposed in [69,70] will be used to get the behavior of the whole
structure and to evaluate uniform and optimal convergence. The s-norm,
defined in [69,70], is briefly presented in the Appendix A.

10.1. Simply supported (SS) under uniform loading of a sandwich plate

For the first test to validate our new element, we will use the test pro-
posed by Srinivas [65]. Fig. 11 shows the details of this test in terms of
chosen geometric and material properties. We will only analyze one quarter
with area ABCD. The layer 2 (core) properties are proportional to those of
layers 1 and 3, where E and G values of the core are C times weaker than
those of the skin (C=1, C=10, and C=50 are evaluated in this test).

Table 2 reports the results of central deflection at point C for
L/h=10, where the analytical computation result based on 3D elasti-
city theory [65] is used as the reference solution. The central dis-
placement of point C is expressed in the form:

Fig. 11. Simply supported square sandwich plate under
uniform loading. Data material (skin and core orthotropic):
EL=3.4156MPa; ET=1.7931MPa; υLT=0.44;
GLT=1MPa; GLZ=0.608MPa; GTZ=1.015MPa;
Stratification: sandwich; 3-layered 0/0/0 symmetrical;
L=1000; h=100. Boundary Conditions: W= θY=0
along AB and W= θX=0 along AD. Symmetrical condi-
tions: U= θY=0 along BC, V= θX=0 along DC.

I. Katili et al. Composite Structures 202 (2018) 182–200

190



=W W G
h f

(Core)
C

C LT

z

All numerical results obtained are very close to the reference solution.
We have also checked that DKMQ24 and MITC4 [27] give similar results.

To get the behavior of the whole structure, the s-norm test is per-
formed. Figs. 12 and 13 present the convergence behavior of DKMQ24
and MITC4 [27] elements in composite application using L/h=4, 10,

100, 1000 and 10,000. The result of DKMQ24 with N×N=128×128
is used as reference solution. We found that the result of DKMQ24
element are similar to MITC4 for thick plate problem. However, in thin
plate problem, DKMQ24 element leads to smaller errors.

To study the sensitivity of the DKMQ24 element, we analyze the
same test using distorted meshes presented in Fig. 14. The central de-
flection at point C for L/h=10 compared to the reference values of
Srinivas [65] is presented in Table 3. The two elements give the results
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Fig. 13. Convergence behavior of SS sandwich square plate by using s-norm for MITC4 (regular mesh).

Table 3
Convergence of central deflection WC (L/h=10) computed with distorted mesh.

N×N C= 1 C= 10 C= 50
κ11 = κ22 = 0.8333;
κ12 = 0

κ11 = κ22 = 0.3521;
κ12 = 0

κ11 = κ22 = 0.0938; κ12
= 0

DKMQ24 MITC4 DKMQ24 MITC4 DKMQ24 MITC4

4×4 182.776 183.616 42.269 42.591 17.028 17.104
8×8 181.515 181.905 42.052 42.143 16.884 16.903
16×16 181.374 181.492 42.011 42.034 16.849 16.854
32×32 181.358 181.389 42.001 42.007 16.841 16.842
64×64 181.356 181.364 41.999 42.000 16.838 16.839
Ref. [65] 181.050 41.906 16.753
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Fig. 12. Convergence behavior of SS sandwich square plate by using s-norm for DKMQ24 element (regular mesh).

Table 2
Convergence of central deflection WC (L/h=10) with uniform mesh.

N×N C= 1 C= 10 C= 50
κ11 = κ22 = 0.8333;
κ12 = 0

κ11 = κ22 = 0.3521;
κ12 = 0

κ11 = κ22 = 0.0938;
κ12 = 0

DKMQ24 MITC4 DKMQ24 MITC4 DKMQ24 MITC4

4×4 180.621 180.690 41.912 41.982 16.902 16.921
8×8 181.115 181.190 41.973 41.994 16.854 16.858
16×16 181.290 181.310 41.992 41.997 16.842 16.843
32×32 181.339 181.350 41.996 41.998 16.839 16.839
64×64 181.351 181.350 41.998 41.998 16.838 16.838
Srinivas [65] 181.050 41.906 16.753
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that converge to the reference solution for all value of C. Figs. 15 and 16
present the convergence behavior of DKMQ24 and MITC4 [27] ele-
ments by using the distorted mesh. We found that the behavior of
DKMQ24 is similar to the MITC4 element for thick plate problem.
Moreover, this test reveals that DKMQ24 and MITC4 elements in
composite application are not very sensitive to mesh distortion.

10.2. Non-symmetric sandwich plate

We analyze simply supported square sandwich plate with non-sym-
metric layer arrangement under uniform loading fz. For the plate section
non-symmetry, there is a coupling between bending and membrane ef-
fects. We can see the data for this test in Fig. 17. Because of symmetry, in
the loading and boundary conditions, we only analyze one quarter with
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Fig. 15. Convergence behavior of SS sandwich square plate by using s-norm for DKMQ24 (distorted mesh).
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Fig. 14. Distorted mesh of square plate.
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Fig. 16. Convergence behavior of SS sandwich square plate by using s-norm for MITC4 (distorted mesh).
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area ABCD. The layer 2 (core) properties are proportional to those of
layers 1 and 3, where E and G values of the core are 10 times weaker than
those of the skin. We check the convergence of numerical results com-
puted by DKMQ24 against the reference solution by Srinivas [65].

We can validate our element DKMQ24 by comparing the vertical
displacement in point C against the reference solution by Srinivas [65]
and also provide a comparison to the other element. The reference of
central displacement is given by

=W W G
h f

(Core)
C

C LT

z

The central deflection at point C for L/h=10 compared to the

Fig. 17. Simply supported square sandwich plate non-symmetry. Data material (skin and core orthotropic): EL=3.4156MPa; ET=1.7931MPa; υLT=0.44; GLT=1MPa;
GLZ=0.608MPa; GTZ=1.015MPa. Boundary Conditions: W= θY=0 along AB and W= θX=0 along AD. Symmetrical conditions: U= θY=0 along BC, V= θX=0 along DC.

Table 4
Convergence of central deflection WC of simply supported square sandwich plate non-
symmetry.

N×N κ11 = κ22 = 0.2449; κ12 = 0

DKMQ24 MITC4

4×4 34.686 34.740
8×8 34.728 34.744
16×16 34.740 34.744
32×32 34.743 34.744
64×64 34.744 34.745
Ref. [65] 34.549

Fig. 18. Simply supported 3-layered and 9-layered square
plates. Material properties: EL=25MPa; ET=1MPa;
υLT= υTZ=0.25; GLT=0.5MPa; GTZ=0.2MPa; fz= f0
sin(πx/L) sin(πy/L); for 3-layered: κ11= 0.570;
κ22= 0.882; κ12= κ21= 0; 0/90/0 symmetrical; for 9-
layered: κ11= 0.670; κ22= 0.666; κ12= κ21= 0; 0/90/0/
90/0/90/0/90/0 symmetrical. Boundary Conditions:
W= θY=0 along AB and W= θX=0 along AD.
Symmetrical conditions: U= θY=0 along BC, V= θX=0
along DC.
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reference values of Srinivas [65] is presented in Table 4. All the nu-
merical results obtained are very close to the reference solution. We
have also checked that DKMQ24 and MITC4 [27] give similar results.

10.3. Simply supported 3-layered and 9-layered square plate under
sinusoidal pressure load

In this test, we analyze a simply supported 3-layered and 9-layered
unidirectional square laminated, composite plate with L=1000 and dif-
ferent thickness, using DKMQ24 shell element. We carry out the analysis
for uniform and distorted mesh, and compare the performance of
DKMQ24 element against MITC4 [27] element. This test is proposed by
Pagano and Hatfield [66,67], with the details presented in Fig. 18.

The solution for vertical displacement in point C is expressed with
the following form:

=

= = + + +
−

W

S Q G; 4

C
W Q
S h f

L
h LT

E E

π
12

( (1 2υ ))
(1 υ υ )

C

o

L T TZ
LT TZ

4
4

We can see in Tables 5 and 6 the computed central displacement for 3-
layered and 9-layered matches very well the reference solution given by
Pagano and Hatfield [66,67] when using uniform mesh. We also found a
good agreement between DKMQ24 and MITC4 [27] elements. Figs. 19 and
20 show the convergence behavior of DKMQ24 and MITC4 elements in
composite application. When using L/h=4, 10, 100, 1000 and 10,000
and results of DKMQ24 with N×N=128×128 as the reference solu-
tion, we find again that DKMQ24 element has similar behavior with
MITC4 element for thick plate problem. On the contrary, in thin plate
problem, DKMQ24 element gives smaller error than MITC4 element.

Tables 7 and 8 present the central displacement for 3-layered and 9-
layered compared with the reference solution given by Pagano and Hat-
field [66,67] using distorted mesh shown in Fig. 14. We found a good

Table 5
Convergence of central deflection WC of simply supported 3-layered square plate.

N×N 3-layered

L/h=4 L/h=10 L/h=50 L/h=100
DKMQ24 MITC4 DKMQ24 MITC4 DKMQ24 MITC4 DKMQ24 MITC4

4×4 4.785 4.768 1.746 1.734 1.030 1.018 1.005 0.993
8×8 4.755 4.751 1.740 1.737 1.030 1.027 1.005 1.003
16×16 4.748 4.747 1.738 1.738 1.030 1.029 1.006 1.005
32×32 4.746 4.746 1.738 1.738 1.030 1.029 1.006 1.005
64×64 4.745 4.745 1.738 1.738 1.030 1.030 1.006 1.006
Ref. [66,67] 4.491 1.709 1.031 1.008

Table 6
Convergence of central deflection WC of simply supported 9-layered square plate.

N×N 9-layered

L/h=4 L/h=10 L/h=50 L/h=100
DKMQ24 MITC4 DKMQ24 MITC4 DKMQ24 MITC4 DKMQ24 MITC4

4×4 4.200 4.188 1.517 1.505 1.018 1.006 1.002 0.990
8×8 4.170 4.167 1.512 1.509 1.018 1.015 1.003 1.000
16×16 4.162 4.161 1.511 1.511 1.018 1.017 1.003 1.002
32×32 4.160 4.160 1.511 1.511 1.018 1.018 1.003 1.002
64×64 4.160 4.160 1.511 1.511 1.018 1.018 1.003 1.003
Ref. [66,67] 4.079 1.512 1.021 1.005
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Fig. 19. Convergence behavior of 3-layered square plate by using s-norm with uniform mesh.

I. Katili et al. Composite Structures 202 (2018) 182–200

194



correlation between the numerical results computed both by DKMQ24 and
MITC [27] elements with the reference solution. Figs. 21 and 22 show the
convergence behavior of DKMQ24 and MITC4 [27] elements in composite
plate application by using s-norm. For uniform mesh, L/h=4, 10, 100,
1000 and 10,000 and the results of DKMQ24 with N×N=128×128
taken as reference solution, we found again that DKMQ24 element has
similar behavior with MITC4 element in thick plate problem. Moreover,
the two elements are not sensitive to the mesh distortion.

10.4. Three-layered cylindrical shell with sinusoidal pressure

In this test, we will analyze a three-layered cylindrical shell with

sinusoidal pressure. Because of symmetry, we will analyze only one
quarter of the shell, with the area ABCD shown in Fig. 23. This test was
first analyzed by Ren [71], providing an analytical solution, which was
then revisited by Varadan et Bhaskar [68] who proposed a solution
based on 3D elasticity.

We compare the vertical displacement at point C with the reference
solution in [68]. Table 9 shows the comparison of DKMQ24 and MITC4
elements with reference solution for different ratios of R/h. The re-
ference value of central displacement is given by [68]:

= = ⎛
⎝

⎞
⎠

W E
f S h

W S R
h

10 ;C
L

C
0

4

-5.5

-5

-4.5

-4

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0
-2 -1.5 -1 -0.5 0

(goL
E S) 

 

Log ( Lk )

DKMQ24 ( 9-layer )

Linear p=1

L/h=4

L/h=10

L/h=100

L/h=1000

L/h=10000 -5.5

-5

-4.5

-4

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0
-2 -1.5 -1 -0.5 0

(goL
E S) 

 

Log ( Lk )

MITC4 ( 9-layer )

Linear p=1

L/h=4

L/h=10

L/h=100

L/h=1000

L/h=10000

Fig. 20. Convergence behavior of 9-layered square plate by using s-norm with uniform mesh.

Table 7
Convergence of central deflection WC of simply supported 3-layered square plate (distorted mesh).

N×N 3-layered

L/h=4 L/h=10 L/h=50 L/h=100
DKMQ24 MITC4 DKMQ24 MITC4 DKMQ24 MITC4 DKMQ24 MITC4

4×4 4.804 4.789 1.751 1.750 1.043 1.030 1.022 1.005
8×8 4.760 4.756 1.741 1.741 1.031 1.030 1.009 1.005
16×16 4.749 4.748 1.739 1.739 1.030 1.030 1.006 1.005
32×32 4.746 4.746 1.738 1.738 1.030 1.030 1.006 1.006
64×64 4.746 4.745 1.738 1.738 1.030 1.030 1.006 1.006
Ref. [66,67] 4.491 1.709 1.031 1.008

Table 8
Convergence of central deflection WC of simply supported 9-layered square plate (distorted mesh).

N×N 9-layered

L/h=4 L/h=10 L/h=50 L/h=100
DKMQ24 MITC4 DKMQ24 MITC4 DKMQ24 MITC4 DKMQ24 MITC4

4×4 4.216 4.201 1.529 1.515 1.029 1.015 1.014 0.999
8×8 4.174 4.167 1.515 1.512 1.021 1.017 1.005 1.002
16×16 4.163 4.162 1.512 1.511 1.019 1.018 1.003 1.002
32×32 4.160 4.160 1.511 1.511 1.018 1.018 1.003 1.003
64×64 4.160 4.160 1.511 1.511 1.018 1.018 1.003 1.003
Ref. [66,67] 4.079 1.512 1.021 1.005
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By using NELT=20, 80, 320, 1280 and 5120 (NELT=20 shows in
Fig. 23) and R/h=50, 100 and 500, the vertical displacement of point
C are presented in Fig. 24 and Table 9. The two elements give very good
results compared to the reference solution. We can see that DKMQ24
element converges faster than MITC4 [27] element.
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Fig. 21. Convergence behavior of 3-layered square plate by using s-norm (distorted mesh).
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Fig. 22. Convergence behavior of 9-layered square plate by using s-norm (distorted mesh).
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Fig. 23. Three-layered cylindrical shell. Internal sinusoidal loading Q= f0 sin(πY/L) cos
(4θ); 3-layered 90/0/90; L=80m; R=20m; EL=25 MPa; ET=1 MPa; υLT=0.25;
GLT=0.5 MPa; GTZ=0.2 MPa; Boundary condition: U=W= θY=0 on the side AD;
Symmetry conditions: W= θY= θX=0 on the side AB; V= θX= θZ=0 on the side BC;
U= θY= θZ=0 on the side CD.

Table 9
Convergence of central deflection WC of three -layered cylindrical shell with sinusoidal
pressure.

NELT R/h=50 R/h=100 R/h=500

DKMQ24 MITC4 DKMQ24 MITC4 DKMQ24 MITC4

4×5=20 0.4411 0.3411 0.3766 0.2957 0.0779 0.0736
8×10=80 0.5156 0.4909 0.4447 0.4247 0.0960 0.0950
16×20=320 0.5380 0.5319 0.4647 0.4598 0.1011 0.1008
32×40=1280 0.5439 0.5423 0.4700 0.4687 0.1023 0.1023
64×80=5120 0.5464 0.5461 0.4714 0.4611 0.1026 0.1026
Ref. [68] 0.5495 0.4715 0.1027
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10.5. Ten-layered cylindrical shell with sinusoidal pressure

In this test, we will analyze ten-layered cylindrical shell loaded with
sinusoidal pressure. Because of symmetry, we will analyze only the area
ABCD in the Fig. 25. This test has been studied by Ren [71] analytical
solution, then revisited by Varadan et Bhaskar [68] who proposed a
reference solution based on 3D elasticity.

We compare the vertical displacement of point C with the reference
solution in [68]. In Table 10, which shows the comparison of numerical
results obtained with DKMQ24 and MITC4 [27] elements against the
reference solution for different ratio of R/h. The reference value of

central displacement is given by [68]:

= = ⎛
⎝

⎞
⎠

W E
f S h

W S R
h

10 ;C
L

C
0

4

Similarly, to the previous test, we use NELT=20, 80, 320, 1280
and 5120 (NELT=20 shows in Fig. 25) and R/h=50, 100 and 500.
The computed numerical results for vertical displacement at point C are
presented in Fig. 26 and Table 10. The two elements give very good
results converging to the reference solution. We can see that DKMQ24
element converges faster than MITC4 element.

10.6. Hyperbolic paraboloid shells

Another problem is the problem of a hyperbolic paraboloid com-
posite shell with a distributed load in the normal direction fz. Fig. 27
presents the geometry and mechanical characteristic of this problem.

This particular shell has a negative Gaussian curvature with
boundary conditions along the straight lines. The projection is a rec-
tangular-shape, with bases 2a×2a, and clamped on the sides. This
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Fig. 24. Convergence of central deflection WC of 3-layered cylindrical shell with sinusoidal pressure.

Fig. 25. Ten-layered cylindrical shell. Internal sinusoidal loading Q= f0 sin(πY/L) cos
(4θ); L=80m; R=20m; 10-layered (90/0/90/0/90)S; EL=25 MPa; ET=1 MPa;
υLT=0.25; GLT=0.5MPa; GTZ=0.2MPa; Boundary condition: U=W= θY=0 on the
side AD; Symmetry conditions: W= θY= θX=0 on the side AB; V= θX= θZ=0 on the
side BC; U= θY= θZ=0 on the side CD.

Table 10
Convergence of central deflection WC of simply supported 10-layered cylindrical shell.

NELT R/h=50 R/h=100 R/h=500

DKMQ24 MITC4 DKMQ24 MITC4 DKMQ24 MITC4

4×5=20 0.6178 0.4778 0.4983 0.3983 0.0755 0.0721
8×10=80 0.7235 0.6885 0.5917 0.5669 0.0938 0.0927
16×20=320 0.7548 0.7461 0.6188 0.6126 0.0989 0.0983
32×40=1280 0.7629 0.7607 0.6258 0.6242 0.1002 0.0997
64×80=5120 0.7678 0.7673 0.6274 0.6271 0.1005 0.0992
Ref. [68] 0.7622 0.6261 0.1006
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Fig. 26. Convergence of central deflection WC of 10-layered cylindrical shell with sinusoidal pressure.
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Fig. 27. Hyperbolic paraboloid shells. Data: a=50 cm; b=10 cm; h=0.8 cm; dis-
tributed load in the normal direction: fz=0.01 kg/cm2; Z= (b/a2) XY; Boundary con-
ditions: U=V=W= θX= θY= θZ=0 along sides ABCD; EL=3.4156MPa; ET
=1.7931MPa; υLT=0.44; GLT=1MPa; GLZ=0.608MPa; GTZ=1.015MPa;
Stratification: 3-layered 0/0/0 symmetrical.
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shell geometry corresponds to a shallow shell.
The layer 2 (core) properties are proportional to those of layers 1

and 3, where E and G values of the core are C times weaker than those
of the skin (C=1, C=10, and C=50 are evaluated in this test).
Table 11 and Fig. 28 present the convergence of the deflection
WC=WC×103 versus the number of elements. We can see that
DKMQ24 and MITC4 [27] gives good results.

11. Conclusions

The new four nodes and 24 dof quadrilateral shell element
DKMQ24, using incomplete quadratic interpolation functions for the
rotations, has been presented and evaluated for thick and thin shell
composite problems. The presents DKMQ24 element is valid for any-
shell principal curvatures and position on the four nodes on the middle
surface due to proper coupling between membrane and bending dis-
placement to define the bending strain [11,52]. DKMQ24 element can
equally reproduce the behavior in accordance with the theory of
Kirchhoff and Reissner-Mindlin, due to the use of a shear influence factor

ϕk which is a function of shell thickness ratio.
This also explains the position of the DKMQ24 element relative to

the MITC4 [27] and DKQ24 [62] shell elements. The DKMQ24 element
will become identical to the MITC4 element when ϕk is very large. On
the other hand, the DKMQ24 element become identical to the DKQ24
[62] element when ϕk is very small.

The results of the analysis show that this element can pass all
standard convergence tests, without membrane locking. It is also free of
shear locking, as the DKMQ plate element [41]. In bending dominated
problems, results obtained with DKMQ24 element are very good and
the convergence is faster than with MITC4. This is due to the quadratic
interpolation functions for the rotations used in DKMQ24.

Acknowledgments

The authors gratefully thank the Ministry of Research, Technology
and Higher Education (RISTEKDIKTI) of the Republic of Indonesia for
the support through the World Class Professor Program (No. 168.A10/
D2/KP/2017).

Appendix A

A.1. S-NORM METHOD

Uniform and optimal convergence of elements can be assessed using s-norm tests as defined in [72,73,70,74].
The relative error is computed using the general expression:
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E e|| ||
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where: ||Π ||int
Ref 2 refers to the strain energy of the reference solution which can be defined by an analytical expression or numerically by using a very

fine mesh with “good” elements.
Even if an analytical solution is available it is not always easy to express ||Π ||int

Ref 2 and usually a very fine mesh is used.
For the present plate bending problems, we then have:
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NELT is the total number of elements in the reference mesh.

Table 11
Convergence of central deflection WC (L/h=100) of hyperbolic paraboloid shells.

N×N C= 1 C= 10 C= 50
κ11= κ22= 0.8333; κ12= 0 κ11 = κ22 = 0.3521; κ12 = 0 κ11 = κ22 = 0.0938; κ12 = 0

DKMQ24 MITC4 DKMQ24 MITC4 DKMQ24 MITC4

4×4 34.001 46.742 124.060 151.447 156.532 183.863
8×8 31.093 32.755 113.448 117.973 143.202 148.531
16×16 30.068 30.952 111.451 112.619 141.148 142.667
32×32 30.530 30.500 110.212 111.569 141.104 141.540
64×64 30.529 30.555 111.279 111.382 141.253 141.373
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Fig. 28. Convergence of central deflection WC/WC (DKMQ24 with mesh 64×64) of hyperbolic paraboloid shells.
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where
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We integrate over the element area using Gauss point (2× 2) in the reference mesh. From the result of each element of the target mesh, we have
to calculate the values of 〈 〉N (ξ ,η ) ,h I I 〈 〉M (ξ ,η )h I I and〈 〉T (ξ ,η )h I I at Gauss points I (A-6) of each element in the reference mesh.

In the s-norm method, the errors are represented by plotting curves Log of ES in term of Log Lk, where Lk represents an indicator of the element
size in a mesh (in our work Lk is the element size for square elements and an average element size for distorted meshes). The theoretical convergence
(energy) formula:

≅E cLs k
p2 (A-7)

where c is a constant and p is the interpolation order. We use reference lines for Eq. (A-7) with p=1 corresponding to a linear convergence.
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