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Multi-scale representation of plastic deformation in fiber-reinforced 
materials: application to reinforced concrete 
 

 

1 INTRODUCTION 

To model fiber-reinforced composite materials, one has to take into account the behavior of each of 
the constituents, and their interaction. In the case of fiber-reinforced concrete (FRC), we are dealing 
with concrete, steel fibers, and the interface between them. We can consider standard reinforced 
concrete as a special case of such a material, with its specific features. First of all, there are not 
more than a few reinforcement bars embedded in concrete (compared to a large number of random-
ly oriented short fibres in FRC), that is usually straight, larger in diameter, and anchored at its 
ends. This facilitates the numerical implementation, as the steel reinforcement can lie along the fi-
nite element’s edge, and the anchorage prevents the pull-out of the bar. 
 One of the most important choices to make when dealing with the interaction of two different 
materials (steel and concrete in this case), is the treatment of the interface between them. Many 
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Abstract 

Here we present a multi-scale model to carry out the computation of 
brittle composite materials reinforced with fibers, and we show its 
application to standard reinforced concrete. The computation is 
performed within an operator-split framework on the macro-scale, 
which allows for different failure mechanisms to develop in separate 
phases, as both the concrete and the bond-slip exhibit non-linear 
behavior. The computations on the micro-scale are performed for 
each constituent separately. The reinforcement is taken to be linear 
elastic, and the bond-slip is handled as a plastic deformation. The 
standard elastoplastic procedure is used to compute the bond stress-
es, combined with the X-FEM methodology to give the global repre-
sentation of slip. The crack development in concrete, on the other 
hand, is described with a damage model with exponential softening, 
where ED-FEM is used to represent localized failure. A numerical 
example is shown to test the developed methodology. 
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authors have opted for the insertion of a special interface element, i.e. Ožbolt et al. (2002), Kohneh-
pooshi and Jaafar (2017), while others have chosen a layered description of reinforced concrete,  
where each layer can represent a different material, i.e. Jukić et al. (2014) or Šćulac at al. (2014). 
An example of the utilisation of a special interface element can be found in the work of Dominguez 
et al. (2005), where a degenerated Q4 element is used to handle the relative displacements between 
the steel and concrete. Despite the fact that such a description of slip can provide many benefits, it 
has can be gruesome to handle and implement. A simplification regarding the constitutive law in 
this kind of Q4 element can be found in Ibrahimbegovic et al. (2010), where a Drucker-Prager non-
associative plasticity model is used, but still the issue with introducing a special element persists.   
 That is why we have decided to simplify the handling of bond-slip, but without sacrificing the 
model capabilities. Building on top of the work of Ibrahimbegovic et al. (2010), we are proposing a 
novel and efficient way to take into account the slip between the reinforcing bar and the surrounding 
concrete. Instead of having a special finite element for every constituent (i.e. a CST element for con-
crete, a truss bar for steel, and a Q4 element for bond-slip), we have encapsulated all three ingredi-
ents in a single finite element, without the need to worry about the nodal connections between the 
concrete, steel, and interface part. 
 In the next chapter, the formulation of the model is presented, with its specific micro-macro 
treatment of the interaction of three different constituents, and after that we show the results of the 
numerical simulation of a reinforced concrete specimen. 

2 FORMULATION 

2.1 Displacement field approximation 

We start by defining the bond-slip as the relative displacement between steel and concrete 

where %  represents the slip on the interface along the reinforcement bar, %  is the concrete dis-
placement, and %  is the steel displacement. This kind of description allows us to write the dis-
placement field of a single finite element as a sum of the standard and the enriched part, according 
to the X-FEM methodology (Fries and Belytschko, 2010) 

 Equation (2) exploits the partition of unity property of standard shape functions % , that allows 
for any other function (in this case the enrichment function % ) to be reproduced exactly on the ele-
ment domain %  (Melenk and Babuška, 1996). The enrichment function %  is in our case equal to the 
Heaviside function, which takes the value one in the elements that contain the reinforcement bar 
(that is located at coordinate % ), and zero in all the other elements 

(1)%αbs = dc − ds

αbs dc

ds
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n
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Latin American Journal of Solids and Structures xx (20xx) xxx-xxx 



    T. Rukavina et al. / Multi-scale representation of plastic deformation in fiber-reinforced composites  !3

 Since in our case the steel bar coincides with the lower edge of the enriched element, as shown on 
Figure 1, we can simplify equation (2) by exploiting the properties of the enrichment function (3) 

 The multi-scale characteristics of our model can be observed in the treatment of the failure 
mechanisms on two levels, macro and micro. The macro-scale computations are divided in two phas-
es, according to the macro-scale operator-split procedure: the macro-global phase (where the con-
crete and the steel are taken into account), and the macro-local phase (where the redistribution of 
slip is computed, with the steel bar acting as a coupling term). But, that is not all, since every con-
stituent is taken care of within a micro-scale computation, which can have its own operator-split 
solution procedure, as in the case of concrete and bond-slip, giving rise to micro-local and micro-
global computations. All of this is important for ensuring the best possible description of the behav-
ior of each constituent, with its own peculiar phases related to specific failure mechanisms. Also, it is 
important to carry out all the computations in a defined order, based on experimental observations 
on composite specimens. 

2.2 Micro-scale computations 

To be able to couple the three constituents, each one of them has to provide the stress value that is 
computed from its own constitutive law and kinematics (Figure 2). 

 Steel computation. Since the steel reinforcement is taken to be linear elastic, its constitutive equa-
tion is 

 In equation (5), %  is the stress, %  is the Young’s modulus for steel, and %  is the strain that is 
defined as 

where the steel displacements are computed according to (1). 

(4)%u(x) |Ωe =
3

∑
i=1

Nidc
i +

2

∑
i=1

Niαbs
i

Figure 1: Finite element with enriched degrees of freedom (the reinforcement bar is shown in bold).
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 Concrete computation. The chosen material model for concrete is the damage model with isotropic 
hardening, that can take into account the formation of micro-cracks in the bulk, combined with a 
localized failure part that describes the opening of the macro-crack at the discontinuity. We will give 
here just a short description of the model, since all the details regarding the formulation and imple-
mentation can be found in the work of Brancherie and Ibrahimbegovic (2009), or Do et al. (2017) 
for applications in dynamics. 
 The damage functions %  are used to check the admissibility of the stress state, and for the hard-
ening part, this function is defined as 

where %  is the undamaged elastic compliance tensor for the bulk material. It is computed as the 
inverse of the elastic constitutive matrix: % . In the above equation, %  represents 
the norm of %  in the stress space, %  is the Young’s modulus for concrete, %  is the stress at the 
first cracking, and %  is the stress-like hardening variable that controls the damage threshold evolu-
tion.  
 Since the softening part of the response is controlled by an anisotropic multi-surface damage 
model, we have to consider each direction at the discontinuity surface separately. This kind of model 
can account for the crack opening in mode I (in the normal direction) and mode II (in the tangen-
tial direction). In the following equations the subscripts 1 and 2 denote the direction, and %  and %  
stand for the normal and tangential vector on the discontinuity, respectively. The damage functions 
for the discontinuity are then 

(a) (b) (c)

Figure 2: Constitutive law for each material: (a) damage model for concrete; (b) linear elasticity for steel; (c) 
elastoplasticity for bond-slip.

% % %
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Latin American Journal of Solids and Structures xx (20xx) xxx-xxx 



    T. Rukavina et al. / Multi-scale representation of plastic deformation in fiber-reinforced composites  !5

where %  is the traction at the discontinuity, %  is the ultimate stress in tension, and %  is the ultimate 
stress in shear. The stress-like softening variable %  is the same for both directions, and it depends 
on the chosen softening law, i.e. linear or exponential softening. 
 The constitutive equation relating the traction at the discontinuity %  and the crack opening %  is 
based on a traction-separation cohesive law 

where %  is the damage compliance tensor for the discontinuity. The handling of the displacement 
jump inside the element is done through the introduction of incompatible mode functions % . The 
total displacement field of a single element is then a sum of the standard and the incompatible part 

from which it follows that the strain can be written as 

where %  is the matrix of the shape functions’ derivatives, and %  consists of the regular part of the 
incompatible shape functions’ derivatives. 
 The final value of stress in concrete can then be computed from 

 The value of the elasto-damage modulus %  has to be chosen according to the current phase of 
the computation, which is determined from the damage functions described in (7-8). 

 Bond-slip computation. The main novelty in this work is the description of bond-slip through an 
one-dimensional elasto-plastic computation. Since the bond-slip law is given as a relationship be-
tween the bond stress %  and the slip % , instead of the plastic strain %  that is usually employed 
in this kind of computations, we will have the plastic slip % . The computation is carried out 
within an operator-split solution procedure where the evolution equations of internal variables are 
solved in the local phase, on the level of the Gauss numerical integration point of each element, and 
the equilibrium equations are solved globally, on the level of the whole structure (Ibrahimbegovic, 
2009). We start by an elastic trial step, in which the plastic multiplier %  is equal to zero, and the 
values of all internal variables are frozen (they take the value from the previous time step) 

 In the above equations, %  represents the hardening variable, %  is the stress-like hardening 
variable for bond-slip, and %  is the hardening modulus. The trial value of bond stress is then 
computed as 
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where %  is the bond-slip tangent modulus. The term in the brackets represents the elastic slip 
% , since the total slip can be represented as the sum of the elastic and the plastic part: 
% . The total slip is computed from the nodal values of slip, % , which are obtained 
from the local iteration of the macro-level computation 

 The bond-slip shape functions %  are actually the product of the standard shape functions for 
concrete, and the X-FEM enrichment function % , as given in equation (2). For our case it follows 

since the enrichment function is a Heaviside function, so in the end we get % , that are the linear 
shape functions for a truss bar. 
 To check if the trial value of stress is admissible or not, we introduce the yield function  

where %  is the ultimate value of bond stress. We have two cases to consider: if the trial value of the 
yield function is negative or zero, the step is indeed elastic and the trial values are accepted as final. 
If not, we have to proceed to the plastic step to correct the value of bond stress due to the plastic 
slip activation. 
 In the plastic step, we have to compute a new value for the plastic multiplier 

which is used to update the internal variables according to 

 The final value of stress is then 

 The elastoplastic tangent modulus in the elastic phase is equal to % , and in the plastic phase, it 
has the value 

  
2.3 Macro-scale computations 

By inserting the approximation of the virtual displacement field into the weak form of the equilibri-
um equations, and after gathering the terms related to the concrete displacements % , and the ones 
related to the bond-slip displacements % , we are left with two systems of equations  
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 Here, %  denotes the number of elements, and %  the number of enriched elements (the ones con-
taining the steel bar). The global equation (22a) is solved with a fixed slip, and in the local one 
(22b) the redistribution of slip is computed. The external force vector and the internal force vectors 
for concrete, steel, and bond-slip, are defined in the following manner  

 In equation (23), %  is the matrix of derivatives of the shape functions for the steel bar, %  is the 
cross-sectional area of the bar, and %  is the bond-slip area that is computed as the circumference 
of the bar (it is the part of the steel bar in contact with concrete). In the external force vector, %  
represents the volumetric forces, and %  is the imposed traction acting at the boundary % . 
 By linearizing (22), we obtain the following system of equations 

where the tangent stiffness matrices are defined as 

 The system (24) is handled within the macro-scale operator-split solution procedure, that gives 
us two equations to solve sequentially 

where %  is the condensed stiffness matrix  

(22)%  

%

rcs =
n
𝔸

e=1
f c,int,e +

nen
𝔸

e=1
f s,int,e − f ext = 0

rsbs =
nen
𝔸

e=1 (f s,int,e + fbs,int,e) = 0

n n en

(23)

%  

%  

%  

%

f c,int,e = ∫Ωe
BT σ cd A

f s,int,e = ∫Γes

Bs,T σ s Asd x

fbs,int,e = ∫Γes

Bs,T σbs Absd x

f ext = ∫Ωe
N b d Ωe + ∫Γσ

N t d Γσ

Bs As

Abs

b
t Γσ

(24)%[Kcs Fcs

Fsbs Hsbs] [ Δdc

Δαbs] = − [ rcs

rsbs]

(25)

%  

%  

%

Kcs = ∫Ωe
Bc,T CedBc d A + ∫Γes

Bs,T Es AsBs d x

Fcs = Fsbs = ∫Γes

Bs,T Es AsBs d x

Hsbs = ∫Γes

Bs,T Es AsBs d x + ∫Γes

Bs,T Cep,bs AbsBs d x

(26)%  
%

K̂ Δdc = − rcs

Hsbs Δαbs = − rsbs

K̂

(27)%K̂ = Kcs − Fcs (Hsbs)−1 Fsbs
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 Equation (26a) is the macro-global equation that gives us the value of the concrete displacement 
for the fixed value of slip. With the value of %  in hand, we proceed to the macro-local equation 
(26b), where we update the value of the slip % . 

3 NUMERICAL RESULTS 

The proposed methodology was implemented in FEAP (Finite Element Analysis Program), devel-
oped at Berkeley by professor R. L. Taylor (2014). All the described constituents are implemented 
into a single finite element that allows for an efficient computation of their interaction. 
 To test the performance of the developed formulation, we have performed a tension test on a 
concrete specimen of dimensions 400x100x100 mm2, reinforced by a steel bar of diameter 16 
mm. Since our model is 2D (as shown of Figure 3.), the area of the bar and the bond-slip area are 
divided by the thickness of the specimen.  

 We consider the steel bar to be fixed at both ends, as it is anchored in concrete. The material 
properties used in the model are listed here:  

• for concrete: % , % , % , % , % ,
% , % ; 

• for the steel bar: % , % ; 
• for the bond: % , % , % , % . 

 Among the properties listed above, %  is the Poisson’s ratio for concrete, and %  is the parameter 
that controls the exponential softening. %  is the ultimate stress for a strip of weakened elements 
in the middle of the specimen where the crack will appear.  

dc

αbs

ϕ =

Figure 3: Geometry of the reinforced concrete specimen in 2D.

%

Ec = 45700 MPa νc = 0.2 σ̄ f = 3.5 MPa Kh = 1000 MPa ¯̄σ f = 4 MPa
¯̄σ f,weak = 3.8 MPa βc = 20

Es = 210000 MPa As = 2.01 mm2

Kbs = 30 N/mm3 τy = 6 MPa Kbs,h = 0.03 N/mm3 Abs = 0.5 mm

νc βc

¯̄σ f,weak

Figure 4: Finite element mesh with enriched elements shown in grey.

%
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 The specimen is fixed at the left-hand side, and there is an imposed displacement %  
acting on the right-hand side. The finite element mesh shown on Figure 4 consists of 800 CST ele-
ments, where the triangle sides of each element have the dimension 10 mm. There are 40 enriched 
elements along the reinforcement bar. 

  
 The force-displacement diagram shown on Figure 5 plots the reaction in the % -direction at the 
left-hand side against the imposed displacement on the right-hand side. We can observe several par-
ticular phases of the composite behavior: the linear elastic phase is followed by a hardening phase 
when micro-cracks start to appear in concrete. After the ultimate load of about 500 N is reached, 
the crack develops in the weak zone in the middle of the specimen, so we enter the softening phase. 
After a while, the reaction starts ascending, due to the redistribution of stresses and the reinforce-
ment activation. This resembles the typical diagrams that are found in the literature, which are ob-
tained for a specimen with a single crack. 

ū = 0.5 mm

Figure 5: Force-displacement diagram for the tension test.

%

x

%

Figure 6: Distribution of slip %  along the reinforcement bar at the end of the analysis (nodal values).αbs
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 On Figure 6. we can see the distribution of slip along the reinforcement bar, where the largest 
slips are taking place near the crack, and at the ends the slip is zero. On the left of the crack, %  
has a positive value, and on the left side it is negative, because the reinforcement is moving (rela-
tively to the concrete) from the ends to the centre; in other words, towards the crack. 

 The bond stress has a very similar distribution (Figure 7a), according to the chosen bond-slip 
law for the interface. The evolution of bond stress in time gives rise to an interesting plot (Figure 
7b), where the dashed lines represent the elements left of the crack, and the dotted lines represent 
the ones on the right. We can see that the elements on the left have a positive value of bond-stress, 

(a) (b)

% %

Figure 7: Bond stress: (a) distribution of %  along the reinforcement bar (values at Gauss points); (b) evolution of 

%  in time for all enriched elements.

σ bs

σ bs

αbs

(a) (b)

% !

Figure 8: Plastic slip: (a) distribution of %  along the reinforcement bar at the end of the analysis (values at 

Gauss points); (b) evolution in time for the enriched elements that have entered the plastic phase.

αbs,p
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and for the elements on the right the bond stress is negative. The bold solid line represents the val-
ue of bond stress in the cracked element, that is very near to zero, since it is the inflection point of 
the curve shown on Figure 7a. The bold dashed and dotted lines represent the elements nearest to 
the crack, where the bond stress is largest, and where the ultimate value of bond stress, % , has been 
reached.  

  
 Related to that is the plastic slip development shown on Figure 8b, where it can be observed 
that the plasticity occurs only at the end of the analysis, in five elements that are nearest to the 
crack (two on the left side, and three on the right). The same can be seen on Figure 8a, where the 
plastic slip is plotted at Gauss points along the reinforcement bar. The plastic slip is equal to zero in 
most of the enriched element, since they have not yet entered the plastic phase, so the interface is 
behaving elastically. 
 Figure 9. gives the representation of the crack opening in concrete, that reaches the value of 
% 0.47 mm at the end of the analysis. As it has been already explained, the macro-crack starts to 
open when the material reaches the ultimate stress, which happens around time 0.25. There are also 
two small crack in the elements right next to the main crack, but their size is negligible compared to 
the main crack. 
 It is interesting to point out that the crack opening in concrete coincides with the slip activation, 
which can be compared on Figure 7b and Figure 9b. This is in accordance with our model assump-
tion that there is no slip when the concrete and the steel have the same displacement. So, the crack 
opening in concrete, % , is giving rise to the difference between the concrete and steel strain field, 
that is, in turn, activating the bond-slip % . Moreover, we can test this notion by plotting the crack 
opening evolution and the slip evolution on the same diagram, as has been done on Figure 10. We 
are plotting the values of %  in the Gauss point of the cracked element (represented by the solid 
line), and the values of %  in the left and the right node of the same element (dashed and dotted 
line, respectively). While we have already noted that the two nodes in question have the displace-

τy

(a) (b)

% !

Figure 9: Crack opening in concrete: (a) distribution of %  along the reinforcement bar at the end of the analysis 

(values at Gauss points); (b) evolution of %  in time for the cracked elements near the middle of the specimen.

αc

αc

αc =

αc

αbs

αc

αbs
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ments of opposite sign, it is even more compelling that, quantitatively, the absolute values of the 
two slips add up to give nearly the same value as the crack opening at a given time. The sum of two 
slips is  represented by a dotted line on Figure 10. 

4 CONCLUSIONS 

The methodology presented in this paper allows us to model the failure mechanisms in reinforced 
concrete happening on the different scales of the material, by taking into account the behavior of 
each of the constituents. The bond-slip is handled within a 1D elastoplastic framework, and we have 
shown that this simplification does not affect the model predictivity; hence it represents an im-
provement compared to previous works based on interface elements. 
 We have given the multi-scale set-up for this kinds of problems, where multi-level operator-split 
solution procedures can be performed during the computation. In the numerical example, we have 
shown the relationship between the crack opening and the bond-slip, which corresponds to the real-
istic processes happening during the failure of fiber-reinforced composites. 
 The next step would be to extend the methodology to take into account the complete pull-out of 
the fiber, in order to capture the failure mechanisms taking place when the fiber’s ends are not an-
chored in the surrounding material. 
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