Motion of a spherical capsule in branched tube flow with finite inertia
Abstract
We computationally study the transient motion of an initially spherical capsule flowing through a right-angled tube bifurcation, composed of tubes having the same diameter. The capsule motion and deformation is simulated using a three-dimensional immersed-boundary lattice Boltzmann method. The capsule is modelled as a liquid droplet enclosed by a hyperelastic membrane following the Skalak’s law (Skalak et al. , Biophys. J. , vol. 13(3), 1973, pp. 245–264). The fluids inside and outside the capsule are assumed to have identical viscosity and density. We mainly focus on path selection of the capsule at the bifurcation as a function of the parameters of the problem: the flow split ratio, the background flow Reynolds number $Re$ , the capsule-to-tube size ratio $a/R$ and the capillary number $Ca$ , which compares the viscous fluid force acting on the capsule to the membrane elastic force. For fixed physical properties of the capsule and of the tube flow, the ratio $Ca/Re$ is constant. Two size ratios are considered: $a/R=0.2$ and 0.4. At low $Re$ , the capsule favours the branch which receives most flow. Inertia significantly affects the background flow in the branched tube. As a consequence, at equal flow split, a capsule tends to flow straight into the main branch as $Re$ is increased. Under significant inertial effects, the capsule can flow into the downstream main tube even when it receives much less flow than the side branch. Increasing $Ca$ promotes cross-stream migration of the capsule towards the side branch. The results are summarized in a phase diagram, showing the critical flow split ratio for which the capsule flows into the side branch as a function of size ratio, $Re$ and $Ca/Re$ . We also provide a simplified model of the path selection of a slightly deformed capsule and explore its limits of validity. We finally discuss the experimental feasibility of the flow system and its applicability to capsule sorting.