
HAL Id: hal-02045412
https://utc.hal.science/hal-02045412v1

Submitted on 22 Mar 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Knowledge Capture and Reuse Through Expert’s
Activity Monitoring in Engineering Design

Harvey Rowson, Matthieu Bricogne, Lionel Roucoules, Alexandre Durupt,
Benoit Eynard

To cite this version:
Harvey Rowson, Matthieu Bricogne, Lionel Roucoules, Alexandre Durupt, Benoit Eynard. Knowledge
Capture and Reuse Through Expert’s Activity Monitoring in Engineering Design. 15th IFIP Inter-
national Conference on Product Lifecycle Management (PLM), Jul 2018, Turin, Italy. pp.621-630,
�10.1007/978-3-030-01614-2_57�. �hal-02045412�

https://utc.hal.science/hal-02045412v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

adfa, p. 1, 2011.

© Springer-Verlag Berlin Heidelberg 2011

Knowledge capture and reuse through expert’s activity

monitoring in engineering design

Harvey ROWSON (1)(3), Matthieu BRICOGNE (1), Lionel ROUCOULES (2)

Alexandre DURUPT (1), Benoit EYNARD (1)

1: Université de Technologie de Compiègne, France

2: Ecole Nationale Supérieure d'Arts et Métiers Aix-en-Provence

3: DeltaCAD Lacroix Saint-Ouen, France

E-mail Address: harvey.rowson@utc.fr

Abstract. This paper deals with artificial intelligence driven product engineering

support. Many software systems are available to support the product lifecycle,

especially during product design, such as CAD, PDM, CAE, SDM, etc. Most

product development process is performed using these systems, which through

their rich user interfaces allow skilled professionals to express their expertise and

knowledge using the tools and functions the software is willing to provide them.

At the end of the day, the result of their work is a model, built through a user

interface, and stored in a repository. The goal of our research is to reverse engi-

neer the user’s knowledge by analysing his/her actions with the software system,

based on the assumption that the process will itself be meta-knowledge driven

and that we will focus on engineering software which provide semantically rich

user interfaces. The aim of this paper is to investigate the idea of building reusa-

ble expert knowledge from actions on engineering software user interfaces. It

first outlines existing works from different fields and identifies remaining issues.

It then suggest an approach to address these issues and put together an operational

system.

Keywords: Artificial Intelligence, Knowledge Based Engineering, Engineering

Design, GUI monitoring, Computer Vision

1 Introduction and objective

(Rocca 2012) observe that product engineering could be improved in order to reduce

time spent on sometimes repetitive and other times trivial tasks. This would allow de-

signers to focus their attention and time on higher value-added undertakings. They an-

alyse the subject from a Knowledge Based Engineering (KBE) point of view and ex-

plores how different paradigms, including Information Technology (IT), Artificial In-

telligence (AI) and Computer Aided Design (CAD), can lead to miscellaneous ap-

proaches to KBE. One conclusion is that an important improvement would be “lower-

ing the accessibility level”, suggesting improving the ability for non-programmers to

be able to define the KBE application, in particular by closing the gap between so called

KBE languages and natural languages (Rocca 2012).

More generally, (Intharah et al. 2017) state that much time is wasted using software

non-creatively, on repetitive and tedious tasks. They introduce an approach based on

Computer Vision (CV) and Graphical User Interface (GUI) analysis stated as “learning-

by-demonstration in a GUI world”. They perform extensive experimentations with

these concepts. Although this clearly could help addressing some of the issues observed

by (Rocca 2012) a few years earlier, they nevertheless identify a number of shortcom-

ings. These range from misclassification issues of user actions to unawareness of the

system’s (and software’s) state. (Dominic et al. 2016) elaborate an AI based approach

to capture, store and reuse knowledge within bridge structure calculation, which is

demonstrated through usage of Bayesian networks to optimise parametric design. These

works all strive at enhancing the user’s efficiency while using software systems, by

bringing some assistance in some form, known as KBE in the engineering community.

Our research tackles the problem from a complementary angle, combining many of

the previously mentioned approaches, by suggesting the use of what we will call an

Engineering Personal Assistant (EPA). An EPA is a software agent designed to help

engineers use their dedicated software to perform their product designs. The focus of

the EPA is twofold, first it ambitions to capture knowledge by monitoring the usage of

the engineering software (it thus learns by example), and second it aspires to reuse this

knowledge to help guide the user in future usages (it thus helps by pertinent suggestion).

We believe that many by-product applications are possible for both of these aspects, as

the captured knowledge could be used in many ways, and the advisory agent could rely

on multiple knowledge sources. The EPA concept has some similarities with other

forms of assistance to software usage, such as the Microsoft Clippy assistant1. This was

integrated in office 1997 and abandoned around 2004, it was used mostly as a contex-

tual user friendly online help system. Virtual assistants2 are other examples, such as

Amazon Alexa, Apple Siri, Microsoft Cortana or Google Assistant. These focus mainly

on providing a voice control interface to regular actions (dial contact, create calendar

event, perform Web search, …).

Our proposal, which is in an early state, aspires to achieve a robust approach, at least

conceptually for now, by building upon CV, AI and KBE technologies in a predefined

1 See https://en.wikipedia.org/wiki/Office_Assistant for additional information
2 See https://en.wikipedia.org/wiki/Virtual_assistant_(artificial_intelligence) for details

https://en.wikipedia.org/wiki/Office_Assistant
https://en.wikipedia.org/wiki/Virtual_assistant_(artificial_intelligence)

context, which is that of product engineering and design. Regarding the knowledge

capture aspect, CV is used to monitor and log the system state and actions. KBE struc-

tures and principles, and the focus on product engineering methods and tools, are trans-

verse to the whole approach, providing an overarching domain specific background

allowing the necessary paradigmatic foundations. This paper therefore summarises re-

lated works from the two main fields which we plan to build upon and then proposes

an operational process to enable the vision we have developed, which we plan to im-

plement in a forthcoming demonstrator which is in progress.

2 State of the art of related works

2.1 The field of Knowledge Based Engineering (KBE)

When investigating the state of the art of works targeting a software solution to op-

timize product engineering activities, KBE is a recurring approach. (Danjou et al. 2008)

timestamps the birth of KBE to be around 1980 and present an approach focused on

encapsulating knowledge in customized features in order to achieve capitalization and

reuse in a CAD based environment, which now underlies many knowledge-based sys-

tems embedded in engineering tools, as discussed further.

(Reddy et al. 2015) present a survey of KBE approaches which illustrates the strong

activity of this field and the diversity of approaches and results one can observe. They

identify KBE as being a paradigmatic evolution over parametric design, with the ad-

vantage, amongst others, to be better suited

for rapid development of customisable

product families. Technologically, they

identify KBE to be supported by infor-

mation technologies, artificial intelligence

and knowledge management. The popular-

ity of KBE is rooted in the competitive ad-

vantage it brings for efficiently developing

new products including customisation and

component reusability. With figure 1, they

clarify the concept of knowledge engineer-

ing and propose a diagram illustrating how

it relates to its environment.

According to their analysis, 80% of de-

sign activities can be considered to be re-

current, and KBE can have great impact on these activities. An important step identified

for KBE implementation is that of knowledge capturing and formalisation, and they list

a number of methods and technics targeting this activity, such as MOKA,

KOMPRESSA, DEKLARE or DEE (Reddy et al. 2015) whisle noticing that these pro-

duce knowledge bases which are not readily usable, as they require some tooling tech-

Figure 1:Different elements of knowledge

according to (Reddy et al. 2015)

nology to support them. On the other hand, they also observe that engineering tool pro-

viders also implement internal knowledge-based systems 3. They however state that this

produces somewhat limited knowledge basis, as they tend to be specific to the system

rather than the field, and also the knowledge is not easily extractable and reusable in

different environments. They finally conclude that one of the strongest drawbacks of

current KBE approaches, regardless of the two previously mentioned paths, is the dif-

ficulty to collect and formalise the knowledge in a robust manner, and believe better

usage of Wiki like methods could bring solutions to this.

(Quintana-Amate et al. 2015) take a focused look at the knowledge sourcing issue.

They first account for the successful usage of KBE systems in many industries, with

more in-depth analysis of an Aeronautic example, and some of the issues encountered.

One of these is the recurring difficulties raised by the need to fuel the KBE system with

the required knowledge in the required formalism (often parameterized rules and con-

straints). They propose an extensive review of methods targeting this upstream phase

of most KBE projects, and conclude that this area requires more work in order to solve

the many remaining issues and to improve the overall process. They follow with a re-

view of different related approaches in order to suggest finally a set of technologies

which are identified as being of higher potential to address the knowledge generation

phase. They suggest that artificial intelligence approaches should be pushed to handle

this capitalization phase in order to significantly reduce the need of manual structu-

ration and input of information to generate the required knowledge. They conclude with

the concept of “learning by doing”, which should be promoted in order to use artificial

intelligence in a partially automated knowledge acquisition process.

Focusing on civil engineering, and more specifically bridge structure optimization,

(Dominic et al. 2016) use modern artificial intelligence results, in the form of Bayesian

networks, to establish a model and a method which is able to learn optimization strate-

gies through analysis of existing studies within a bridge management system. They use

a training set to perform machine learning processes which result in a fitting of the

Bayesian network they designed. Although they do not demonstrate the approach’s

ability to support advisory actions, they believe this is possible for example by using

machine learning technics to bridge the remaining gaps in the different modules of their

knowledge management system. In (Dekhtiar et al. 2018), a review on the use of deep

learning in CAD and PLM is also proposed.

Section §3 analysis these elements in regards of the EPA objectives and outlines the

main aspects which our proposal (in §4) should focus on in order to fulfil its objectives,

in particular automating the capitalisation phases and building a transparent while per-

vasive solution.

After this look into the field of product engineering, we will now turn towards the

field of software testing in which a wealth of highly valuable input can be taken from.

As illustrated in the following section, one approach to software testing is the technic

consisting in capturing and replaying action sequences on the software through its GUI

(in a similar way a human tester would do it).

3 Some examples of this approach could be Unigraphics NX Knowledge Fusion or Dassault Sys-

temes CATIA Knowledgeware

2.2 The field of Software Testing and Automation

Software editors, since the advent of GUIs, have faced the daunting task of testing

and validating their products. Batch and script-based testing of command file applica-

tions have long driven the field of software testing, but these approaches fall short when

it comes to software which is not only driven by such command files, and which results

are not only so-called output files. The process for testing this type of software, without

GUI, is basically to create a test case suite, with a set of input command files and a set

of corresponding expected output files. These are then run to check that new versions

of the software produce acceptable results as compared to the reference output files.

Although this does present some challenges of its own (especially when the notion

of acceptable is fuzzy), it certainly misses the point of testing the GUI layers. (Alégroth

and Feldt 2017) seek new solutions to this problem, and start by establishing a clean

taxonomy of the existing approaches they have collected from existing tools and exist-

ing academic works, focusing on validating the GUI layers of software systems. They

identify three distinctive steps in the history of the art of software testing. They go on

to classify following three categories: pixel coordinate approaches, event interception

methods and computer vision paradigms.

(Qureshi and Nadeem 2013) propose an extensive analysis of approaches falling into

the second generation identified by

(Alégroth and Feldt 2017). The in-

teresting point of this is that it illus-

trates the maturity of this field in

contrast to the third generation

which is still emerging at the time.

Their work breaks down the second

generation into 12 families of meth-

ods, synthesized in a table classify-

ing them following a number of in-

teresting criteria, namely: Input

representation of GUI under test, Intermediate representation, Coverage criteria, Auto-

mation, Tool Support, Case study, Fault model, Fault injection. This is illustrated in the

table 1.

(Börjesson and Feldt 2012) state the importance of focusing on the GUI layer of the

system under test (the third generation of approaches reported by (Alégroth and Feldt

2017)). They first proceed to outline and analyse the weaknesses associated to event

capturing and replay, as done within second generation approaches and summarized

above. They then detail existing methods relying on Visual GUI Testing approaches,

and provide further analysis of two tools, one which is a commercial software system

and the second is the open source software application. They demonstrate the usage of

these systems on some experimental cases and conclude to some of the limitations and

difficulties mentioned above. They also point out some interesting distinctions between

the fields of software testing and software automation, as they point out that the first

have a focus on exhaustivity and coverage whereas the second have a focus on under-

standing and intelligence.

Table 1:Methods from (Qureshi and Nadeem 2013)

(Moreira and Lopes de Matos 2014) provide some important complementary ideas

resulting from their work within the European “FCOMP-01-0124-FEDER-020554”

project. Their approach strives to integrate and leverage the fact that GUIs often are

built and designed relying on partly shared and standard design patterns and schemes

(linked, amongst others, to ergonomic and implementation considerations). They pro-

pose a specific model, named DSL PARADIGM, which is able to model these similar-

ities and shared features, and they demonstrate its usage on a number of test cases.

These elements are further analysed in §3 in the light of the EPA’s objectives in

order to identify the main aspects our approach (described in §4) should focus on, par-

ticularly targeting a specific type of software and activity, leveraging use interface rich-

ness and accepting extensive customisation.

The existing works summarised here within these two areas, although non-exhaus-

tive, show that many scaffolding principles of our approach (detailed in §4) are already

quite developed and should be built upon to elaborate the conceptual and technical el-

ements of our solution. Overall, the field is wealthy and attracts high interest from the

international product engineering and software engineering communities, with no sign

of slowing down, and with new paradigms regularly emerging and yielding new hopes

(for example around the current artificial intelligence trend). It also shows a number of

areas where things could be improved if the idea is to promulgate higher robustness and

efficiency of product engineering activities, as presented in the below section.

3 Towards a new kind of software to enhance user support and

efficiency

This section analysis the above state of art at the light of our research objectives,

which, as stated in introduction, is to propose an EPA whose purpose is to support ef-

ficient knowledge capitalisation and reuse within product engineering activities. More

precisely, it aims at capturing the expert’s knowledge by monitoring the expert’s inter-

actions with the engineering software she/he is using, in a somewhat similar way a

human could learn from observing someone else perform a task. However, here we

limit the span to an activity consisting in using a software system and we only consider

the explicit interactions between the user and system. We expect this capitalisation

phase to rely on computer vision (CV) to capture the on-screen actions, and to use some

form of advanced processing to transform these actions into reusable knowledge. The

EPA then aims at reusing this knowledge through proposals to the user while she/he is

interacting with his software. This supposes an identification of the ongoing interaction

as being related to a capitalised interaction (again, likely relying on CV and advanced

processing). It also implies being able to fit the capitalised interactions to any existing

variations, and only then suggesting some support to the user. This can be for example

in the form of automating the end of a multi-step but recurrent interaction.

The objective therefore leads us to identify a number of specificities relative to the

current state of art in the identified fields we summarised in §2.

In particular, relative to the field of software testing, it can first be observed that the

EPA focuses on a specific type of software, which supports a specific type of activity,

respectively engineering support software and product engineering activities. The as-

sumption is that specialising the concepts to this more specific field will reduce com-

plexity and help achieve robust results in capturing interactions. Second, an interesting

characteristic of the targeted software (CAD, CAE and PLM systems) is that they dis-

play rich user interfaces. This means they have a large variety of widgets (buttons, lists,

checkboxes, fields, toolbars, menus, …) and a structure which is viewed as a facilitator

in making sense out of the actions. They are hence coined as being semantically rich

user interfaces. Third, the method integrates the idea of customisation, meaning that

initial work is accepted to adapt the solution to any specificity identified in the target

environment which seems of help to achieve the goal. This opens the path to paramet-

rising and fine tuning the approach as to account for variabilities which could otherwise

tend to hinder robustness. In particular, this aspect allows to establish a meta-

knowledge base (which can include any information deemed useful for the purpose,

including in particular static data, dynamic data, algorithms and workflows) which we

can use to guide our overall process, more of which will be said in §4.1

Relative to the field of KBE, one can observe first that a valuable aspect here is the

automating of the capitalisation phase through automatic observation and learning. This

is seen as complementary to widespread knowledge capitalisation methods mentioned

above in §2.1. Second, the EPA, as its name implies, is a software agent which should

be as transparent as possible to the user, who should barely know of its existence except

from benefitting from its suggestions and proposed automations. The EPA should

seamlessly blend into the user’s environment (operating system and engineering soft-

ware) and will not replace any other system and will not bring any constraints (only

possibilities). Third, the solution should not be hard linked to any specific software, and

in particular, it should not require changes to the existing software, unlike for example

KBE solutions which could be integrated into the CAD systems (Workbenches in

CATIA for example). Fourth, the two aspects of the EPA, namely knowledge capturing

and knowledge reuse, could be leveraged independently, assuming that the captures

knowledge could be of interest for many applications and the advisory engine could

maybe be powered by knowledge from other sources than its own capturing.

The research proposal, which is currently in early state and is planned to be devel-

oped during upcoming works, is presented in the following as we understand it cur-

rently. It consists mainly in building the EPA system as characterised above, starting

by outlining its main architectural dimensions and its major operational principles. Dif-

ferent methods are planned for the validation of its conceptual and operational capabil-

ity. A first goal is to use the EPA to monitor usage videos (such as Catia tutorials found

on youtube) and extract and capitalise knowledge from these. A second will be to reuse

the acquired knowledge in order to replay the tutorials progressively different settings,

for example by first changing technical aspects (screen resolution, colour depth, …)

and going towards higher level changes (initial model state, adaptable parameters, …).

4 How to help engineers use product engineering software

The envisioned approach is hence based on the elements introduced above with the

main idea being to bridge the gap between existing concepts and the target goals. This

section brings further details around these and provides an overall overview of the con-

ceptual framework that is planned to be experimented in future works, as for now it is

more of a scaffolding than a framework. To ease understanding, the solution is pre-

sented as if modules were independent, processes were sequential and things are mon-

omorphic (viewed along one perspective), more of which will be said at the end of this

section. We will first look at the capitalisation process, which will bring us also to the

concept of meta-knowledge. We will then move onto the reuse phase, and elaborate on

potential by-products the system can open to.

4.1 Capitalisation through monitoring and meta-knowledge

A central aspect of the solution is that of monitoring the user’s interactions. Moni-

toring in this context is the activity of capturing and tracing the interactions the user has

with the software she/he is using (Satama 2006). Examples of such interactions could

be when the user activates a button, enters values into fields, activates a toolbar, selects

a menu, … (Sadeghi et al. 2016) present a model of such a process, where they relate

the development of a product part with the sequence of actions on a CAD software and

the related impact within the product model. With this first step in mind, the next step

is to look at how this can be performed. As presented in §2, work has already been done

on capturing user actions on graphical user interfaces, and many results have been

achieved within these works, whether to bring automation or to support software testing

activities. As the EPA is non-intrusive, any approach that involves instrumenting of the

target software will be discarded. Therefore, screen content analysis will be the pre-

ferred path, using mainly computer vision technology applied to identifying GUI widg-

ets on the screen, and the changes of state of these to help identifying actions without

needing to hook (Memon et al. 2003) the operating system’s event stack.

To simplify matters, and with no apparent drawback in the frame of our work, it is

planned to help this process by providing it with as rich and extensive as necessary data

beforehand. (Satama 2006) explore this via the idea of domain specific models to ease

testing. This will be part of the aforementioned meta-knowledge base which will be

elaborated as required and with accepted overhead work. In particular, this will include

information about the possible graphical representations of the interaction widgets (but-

tons, toolbars, …) and the nature of the actions these widgets generate. This includes

contextual variations and the means to identify them as such. For example, the fact that

a same widget could perform different actions depending on how it’s embedded in the

GUI hierarchy. This should be achievable by combining the computer vision technics

presented, such as those overviewed in (Leo et al. 2017), and possibly pushing further

towards machine learning algorithms in order to benefit from multi representation of

each widget, and the purposely created widget base which will be designed specifically

for the targeted scenarios.

4.2 Reusing through contextual similarity identification during operations

The primary usage of this knowledge base within the EPA paradigm is its reuse to

help the user perform tasks where the capitalised knowledge can help automate se-

quences of tasks the user is encountering. The first step to make this possible (assuming

the knowledge base exists that is) is to identify in the current flow of actions an oppor-

tunity for reuse. This means analysing the ongoing interactions, with the same technol-

ogies and methods as during the capitalisation phase, and identifying in real time a

resemblance between the script under elaboration and schemes in the knowledge base.

Obviously, the difficulty is predicting the extrapolation of the script, as the script is

under construction while the scheme is completed, and the goal is to estimate the

chances of any given ongoing script to result into an existing scheme. If a match is

identified, and an existing scheme is deemed pertinent regarding the current interac-

tions, the EPA can suggest help to the user. It should present the proposed scheme, and

the potentially required customisations. The EPA can then finalise the interaction se-

quence for him in an automatic manner using again computer vision technologies to

identify related widgets and activate them as in (Chang et al. 2010).

It should be noted here, that the usage process is in fact possible regardless of the

capitalisation process, providing that the EPA has access to the knowledge in the re-

quired formalism, which for testing purposes could be hand produced. This is an inter-

esting feature as it allows working on the subject in a breadth first method rather than

a depth first, the latter been subject to deadlock should the capitalisation process reveal

unexpected shortcomings. Symmetrically, the capitalisation process can hold value

even if the reuse process falls short. Indeed, analysing the usage logs, scripts and

schemes could be used in many ways, for example to help promote and enhance best

practices or standards across users and teams. Both the capitalisation and reuse aspects

can also be imagined coupled with existing KBE systems, either as tools to generate

the knowledge, or as agents to use it on the fly, providing that interoperability concerns

are accounted for in the knowledge structures and operational principles.

5 Conclusions

This paper has presented a global vision of the Engineering Personal Assistant (EPA)

as a Knowledge Based Engineering (KBE) inspired approach hoping to help product

engineering and design activities by bringing partial automation of software usage.

However, it takes a complementary approach to the current ones, by focusing on auto-

matic capture and learning of the knowledge from monitoring of the user’s interactions

on the software. State of the art artificial intelligence technologies are the foundational

enablers of the process, particularly computer vision linked to machine learning and

template matching, and text processing of the logs to extract and build knowledge. Lots

of work is planned in putting all this together and elaborating the central informational

structures. Current work is focused on formalising the concepts (and models) while

experimenting the envisaged technologies, with already some issues identified with the

computer vision aspects for example (which seem more sensitive to video encoding and

artefacts than expected), but workarounds seem possible.

6 References

Alégroth E, Feldt R (2017) On the long-term use of visual gui testing in industrial

practice: a case study. Empir Softw Eng. doi: 10.1007/s10664-016-9497-6

Börjesson E, Feldt R (2012) Automated system testing using visual GUI testing tools:

A comparative study in industry. Proc - IEEE 5th Int Conf Softw Testing, Verif

Validation, ICST 2012 350–359. doi: 10.1109/ICST.2012.115

Chang TH, Yeh T, Miller RC (2010) GUI testing using computer vision. Proc 28th Int

Conf Hum factors Comput Syst 1535–1544. doi:

http://doi.acm.org/10.1145/1753326.1753555

Danjou S, Lupa N, Koehler P (2008) Approach for Automated Product Modeling Using

Knowledge-Based Design Features.

Dekhtiar J, Durupt A, Bricogne M, Eynard B, Rowson H, Kiritsis D (2018) Deep

learning for big data applications in CAD and PLM – Research review,

opportunities and case study. Comput Ind 100:227–243. doi:

10.1016/j.compind.2018.04.005

Dominic S, Bügler M, Borrmann A (2016) Knowledge based Bridge Engineering -

Artificial Intelligence meets Building Information Modeling.

Intharah T, Turmukhambetov D, Brostow GJ (2017) Help, It Looks Confusing. In:

Proceedings of the 22nd International Conference on Intelligent User Interfaces

- IUI ’17. ACM Press, New York, New York, USA, pp 233–243

Leo M, Medioni G, Trivedi M, Kanade T, Farinella GM (2017) Computer vision for

assistive technologies. Comput Vis Image Underst 154:1–15. doi:

10.1016/j.cviu.2016.09.001

Memon A, Banerjee I, Nagarajan A (2003) GUI Ripping: Reverse Engineering of

Graphical User Interfaces for Testing.

Moreira R, Lopes de Matos M (2014) Pattern-Based GUI Testing. PQDT - Glob 180.

Quintana-Amate S, Bermell-Garcia P, Tiwari A (2015) Transforming expertise into

Knowledge-Based Engineering tools: A survey of knowledge sourcing in the

context of engineering design. Knowledge-Based Syst 84:89–97. doi:

10.1016/j.knosys.2015.04.002

Qureshi IA, Nadeem A (2013) GUI Testing Techniques: A Survey. Int J Futur Comput

Commun 142–146. doi: 10.7763/IJFCC.2013.V2.139

Reddy EJ, Sridhar CN V., Rangadu VP (2015) Knowledge Based Engineering: Notion,

Approaches and Future Trends. Am J Intell Syst 5:1–17. doi:

10.5923/j.ajis.20150501.01

Rocca G La (2012) Knowledge based engineering: Between AI and CAD. Review of a

language based technology to support engineering design. Adv Eng Informatics

26:159–179. doi: 10.1016/j.aei.2012.02.002

Sadeghi S, Dargon T, Rivest L, Pernot J-P (2016) Capturing and analysing how

designers use CAD software.

Satama M (2006) Event Capturing Tool for Model-Based GUI Test Automation.

