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Abstract. The present work provides an analytical solution for the sinusöıdal flow of blood in a cylindri-
cal elastic vessel exposed to an external magnetic field. The vessel is supposed to have non-conducting
walls and the induced electric and magnetic fields are neglected. In other words, the well-known calcula-
tion of Womersley is revisited through the inclusion of the Lorentz force in the Navier-Stokes equations.
A dispersion equation is obtained. This equation admits two types of solutions: the Young waves (mainly
associated with radial deformation of the vessel) and the Lamb waves (mainly associated with longitudinal
displacements in the vessel wall). It is demonstrated that the external magnetic field has an influence on
the wave celerities, on the fluid velocity profiles, and on the wall displacements. It tends to reduce the
blood flow and flatten the velocity profile, in the case of Young waves. The pulsatile character of the flow is
also dampened. However, these effects become detectable for high values of the Hartmann number (M > 4,
corresponding to B0 > 36 T with numerical data pertaining to large human arteries) and remain negligible
in the context of magnetic resonance imaging (B0 ≤ 3 T, or even 7 T).

1 Context and objectives

Several biomedical applications require a good knowledge
of the physics of blood flow and pressure pulse propagation
in a deformable vessel, in the presence of an external static
magnetic field:

i) Cardiac MRI and gating

In the case of magnetic resonance imaging (MRI)
of the heart, the charged particles of the blood get
deflected by the Lorentz force, thus inducing electrical
currents and voltages across the vessel wall and in the sur-
rounding tissues. These voltages disturb the electrocardio-
gram (ECG) detected at the surface of the thorax, making
the ECG-based image synchronization inaccurate. Sev-
eral approaches have been proposed to correct the ECG
signals for these magnetohydrodynamic (MHD) induced
artifacts [1–4]. On the contrary, Kyriakou et al. [5],
decided to try to use the MHD effect measured with ECG
as a biomarker of cardiac output, since it is sensitive to
magnetic flux density, flow orientation with respect to
the magnetic field lines, and velocity of the blood. Other
groups [6,7] even propose to use the MHD induced voltage
itself as a tool for cardiac synchronization.

Besides, the MHD induced voltages may also impact
surrounding tissues (for example, the heart itself) and
other vital signs. This point is addressed in a special issue

a e-mail: agnes.drochon@utc.fr

(no. 87) of Progress in Biophysics and Molecular Biology,
2005.

ii) MRI pulse wave velocity measurement

Pulse wave velocity (PWV) is known to be an indicator
of arterial stiffness, and, as a matter of fact, a predictor of
cardiovascular risk. Diseases such as atherosclerosis affect
the human aortic wall in localized regions. The formation
of plaque changes the mechanical properties of the wall.
MRI has been proposed by several groups as a noninvasive
tool to assess PWV [8–11].

iii) Capture of pulsatile blood energy

Quite recently, a new direction of research has
emerged, aiming at harvesting intracorporeal energy to
provide continuous power to implanted medical devices.
The advantage would be to avoid costly and tedious
replacement or recharging of these medical implants. For
example, Pfenniger et al. [12,13] propose a prototype that
converts the expansion and contraction of an artery (due
to pulsatile blood pressure changes) into electrical energy
by electromagnetic induction. In their concept, a flexi-
ble conductive coil is wound around the artery and an
external magnetic field is applied in parallel to the artery’s
axis. During the systolic phase, the coil expands due to the
deformation of the artery, thus inducing an electric field.
Another group [14] proposed a “liquid metal magneto-
hydrodynamic electricity generator” (LMMG). This duct
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system containing liquid metal is placed inside a magnet
and the whole device would be attached to certain parts of
the human body, such as arm, hand, shoulder, etc. When
the electricity conductive liquid metal moves through the
magnetic field, an electric potential is formed in the trans-
verse direction and the current can be extracted by an
electric load.

iv) Evaluation of tissue engineered constructs

Tissue-engineered scaffolds are made of biocompatible
polymers with various structures that allow one to achieve
cell seeding, growth and differentiation. Non-invasive
imaging methods are needed to study tissue-engineered
constructs before and after implantation. High-resolution
MRI combined with efficient intracellular contrast agents
shows promise for noninvasive 3D visualization of tissue-
engineered constructs before and after in vivo implanta-
tion [15,16]. Optimizing seeding efficiency, reducing
delayed culture periods and mimicking native tissue
architecture are crucial requirements for the development
of seeding procedures in tissue engineering. In vascular
applications, the tubular geometry of the grafts further
hampers the efficient delivery of cells onto the scaffold.
To overcome these limitations, novel technologies based
upon the use of magnetic fields can be used [17,18]. Tubu-
lar structures can even be constructed using magnetic
force [19].

v) Magnetic drug targeting

Moreover, there is nowadays focusing attention on
applications of magnetic fields acting on magnetic micro-
as well nano-particles carrying target cells or molecules in
the research field of magnetic cell and molecule separa-
tion, drug targeting, tumor embolization and gene ther-
apy. Magnetic drug targeting by magnetic carriers is
a very effective method of forcing drugs to the disease
location [20,21]. This technique is based on the possi-
bility of encapsulation of target molecules to magnetic
micro/nanosphere, or their conjugation on the surface of
this magnetic particle. Efficacy of accumulation of carriers
depends on several physical and physiological factors, such
as the size and type of magnetic particles, their surface
character, the gradient and intensity of the applied mag-
netic field, the distance between the magnetic field source
and the desired location of application, the blood flow rate
and other hydrodynamic conditions. This magnetic drug
targeting helps, for example, to reduce side effects of
anticancer agents in surrounding tissue or whole body, due
to their enhanced accumulation in magnetically localized
volume of tumor [22,23].

Besides, this calculation may also have non-biomedical
applications, for example, in industrial situations. And,
of course, an analytical solution is always useful to test
computational codes.

The motion of a conducting fluid through a magnetic
field induces an electric field and a potential difference.
The resulting current and the applied magnetic field, in
turn, produce a Lorentz force on the fluid known as a pon-
deromotive force. For a Newtonian incompressible fluid,

the MHD equations are thus defined by a coupling of
Maxwell’s electromagnetic equations and Ohm’s law, on
the one hand, and the Navier-Stokes equations including
the Lorentz force on the other hand. An optimal modeli-
sation of the magnetohydrodynamic flow of blood should
include the pulsatility of flow, the deformability and
conductivity of the vessel wall, together with the induced
electrostatic and electromagnetic fields. This leads to a
complex mathematical problem and analytical solutions
may be found only under restrictive hypotheses.

To our knowledge, the solutions that may be found in
the literature assume that the vessel is rigid. Setting a
constant pressure gradient, Gold [24] derived expressions
for the velocity profile as well as for the induced magnetic
field, in the case of a circular tube with non conducting
walls placed in a transverse magnetic field. Vardanyan [25]
subsequently published an approximate steady solution
where the velocity profile and flow rate were calculated
by neglecting the induced fields. More recent studies have
been essentially based on these founding works, such as
the study of Keltner et al. [26], where a comparison was
established between the results of Gold and Vardanyan
to assess the consequences of neglecting the inductions.
With the same hypothesis as Vardanyan, Sud et al. [27]
later dealt with a sinusoidal pressure gradient to describe
the pulsed nature of blood flow in arteries, and recently,
Abi-Abdallah et al. [28] proposed a more realistic arte-
rial flow solution using a physiological pressure gradient
model.

The hypothesis of conducting walls was first intro-
duced by Kinouchi et al. [29] who included inductions
in the vessel and the surrounding tissues, in the steady
flow case, to evaluate the ECG superimposed voltages,
using finite elements (numerical solution). Later, Martin
et al. [30] reproduced the experimental MHD effect
occurring in the aorta through computer simulations on a
realistic anatomy, and with a three compartment model:
inductionless MHD equations in the aorta (considered as
a rigid vessel, with conductive walls), bi-domain equations
in the heart, and electrical diffusion in the rest of the body.
These compartments are strongly coupled and solved
using finite elements.

Other numerical solutions developed in the case of
rigid tubes can be found in the literature. For example,
Shit [31] proposed an investigation of the flow entrance
length behind singularities (for example, near the origin
of arterial branches, arterial constrictions and aortic arch)
under magnetic environment. He assumed non-conducting
walls, and, the induced magnetic and electric fields are
not neglected. His code has been tested using the theoret-
ical results that are presented in Abi-Abdallah et al. [32].
Using the Finite Difference Method, Sankar et al. [33]
analyzed the pulsatile flow of blood through stenosed
arteries in the presence of magnetic field. Due to the pres-
ence of the stenosis, they consider the vessel wall as rigid,
and, for low Reynolds numbers, they neglect the radial
velocity component. They do not deal with induced fields
and voltages.

The present work provides an analytical solution
including the vessel wall deformability by a coupling of
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equations for the fluid and for the motion of the wall, in
the case of simple sinusoidal flow, non-conducting wall and
neglected inductions. In other words, the well-known cal-
culation of Womersley [34] is revisited through the inclu-
sion of the Lorentz force in the Navier-Stokes equations.

2 Position of the problem

In our problem, the flow is governed by a coupling of:

i) Maxwell’s quasi-static electromagnetic equations:

�∇ · �E =
ρe

ε
, (1)

�∇ ∧ �E = −∂ �B

∂t
, (2)

�∇ · �B = 0, (3)

�∇ ∧ �B = μ�j, (4)

ii) Ohm’s law:
�j = σ( �E + �u ∧ �B), (5)

iii) Navier-Stokes equations:

ρ

(
∂�u

∂t
+ (�u · �∇)�u

)
= −�∇P + ηΔ�u +�j ∧ �B, (6)

iv) fluid conservation equation (incompressible fluid):

�∇ · �u = 0, (7)

where �u and P represent the fluid velocity (m/s) and pres-
sure (Pa), �E and �B are the electric (V/m) and magnetic
(T) fields,�j the electric current density (A/m2), ε the elec-
tric permittivity (F/m), ρe the charge density (C/m3), μ
the magnetic permeability (H/m); η, σ, ρ represent re-
spectively the fluid viscosity (Pa s), conductivity (S/m)
and density (kg/m3).

If the flow configuration is defined as in Figure 1, the
components of the magnetic field vector in the cylindrical
frame are:

�B = (B0 cos θ,−B0 sin θ,BI(t, r, θ)), (8)

with BI � B0. The induced magnetic field BI does not
depend on z; this is consistent with equation (3).

2.1 Induced fields neglected

Some authors [25,27] have suggested that when the mag-
netic Reynolds number, Rem, (Rem = Ru0σμ, with u0 a
characteristic velocity of the flow) is small, the induced
fields EI and BI can be neglected.

In that case, it comes from (5) that: j = σ(u ∧ B).
Abi-Abdallah et al. [32,35] have shown that this approxi-
mation is acceptable for low B0 fields, such as those used
in biomedical applications.

Fig. 1. Flow model geometry. The vessel is represented by a
cylindrical conduct where blood flows along the Oz axis, in the
presence of a transverse steady magnetic field oriented in the
Ox direction.

2.2 Fluid motion

The problem is solved in the plane θ = π/2, where the
Hall effect is maximal. Some artificial axisymmetry can
then be obtained by a rotation of this plane around the
z-axis. This solution thus provides an overestimation of
the studied effet.

The velocity and magnetic fields are:

�u = (ur, 0, uz) and �B = (0,−B0, 0). (9)

The corresponding Lorentz force is:

�j ∧ �B = [σ(�u ∧ �B)] ∧ �B = −σB2
0

∣∣∣∣∣∣
ur

0
uz

. (10)

The radial and axial projections of Navier-Stokes equa-
tion (6) are:

∂ur

∂t
= −1

ρ

(
∂P

∂r

)
+ ν

(
∂2ur

∂r2
+

1
r

∂ur

∂r
+

∂2ur

∂z2
− ur

r2

)

−σurB
2
0

ρ
, (11)

∂uz

∂t
= −1

ρ

(
∂P

∂z

)
+ν

(
∂2uz

∂r2
+

1
r

∂uz

∂r
+

∂2uz

∂z2

)
− σuzB

2
0

ρ
,

(12)

where ν is the fluid kinematic viscosity.
The amplitude of the pressure disturbance is suffi-

ciently small for the nonlinear terms of the inertia of the
fluid to be considered negligible in comparison with the
linear ones [36,37].

The continuity equation (7) yields:

∂ur

∂r
+

ur

r
+

∂uz

∂z
= 0. (13)

Another equation may be added, taking the divergence of
equation (6) (with convective acceleration terms
neglected). One obtains, using equations (10) and (13):

ΔP = div(j ∧ B) = 0. (14)
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The equations to solve for the fluid motion are thus
(11)–(14).

We seek solutions of this system of equations for the
case of the propagation of forced pressure waves which are
harmonic in t and in z. We will assume that ur, uz and P
vary in the following manner:

P (r, t, z) = P ∗(r) exp
[
iω

(
t − z

c

)]
,

ur(r, t, z) = u∗
r(r) exp

[
iω

(
t − z

c

)]
,

uz(r, t, z) = u∗
z(r) exp

[
iω

(
t − z

c

)]
, (15)

where ω denotes the circular frequency of the forced
oscillation and c denotes the velocity of propagation of
the oscillation.

The solutions may be expressed as:

P ∗(r) =
ηc

ω

α′2

R2
C1J0

(
i
ω

c
r
)

, (16)

u∗
z(r) = C1J0

(
i
ω

c
r
)

+ C2

J0

(
δ′ r

R i3/2
)

J0(δ′i3/2)
, (17)

u∗
r(r) = C1J1

(
i
ω

c
r
)

+
RiωC2

cδ′i3/2

J1

(
δ′ r

R i3/2
)

J0(i3/2δ′)
, (18)

where C1 and C2 are integration constants (m/s), J0(x)
and J1(x) denote the first kind zeroth and first order
Bessel functions, and the dimensionless parameters α′ and
δ′ are given by the following relations:

α′ = R

√
ω

ν
− i

M2

R2
and δ′ =

√
α′2 − i

ω2

c2
R2. (19)

The Hartmann number, M , represents the ratio of the
magnetic forces to the viscous forces and is defined as:

M = RB0

√
σ

η
. (20)

We notice that when M = 0 (no magnetic field), the
parameter α′ reduces to the classical Womersley number.

2.3 Vessel wall motion

To express the equilibrium of a surface element of the
vessel wall, we follow the analysis of Atabek and Lew [37]
and Flaud and Rogova [38].

Let ζr(z, t) and ζz(z, t) denote the radial and longitu-
dinal displacement of a point of the wall due to the wave
motion, h the thickness of the wall (h � R), σp and E
its Poisson’s ratio and Young modulus, and ρw, its den-
sity. The strains in the longitudinal direction and in the
circumferential direction are thus: eL = ∂ζz

∂z and ec = ζr
R .

Using these notations, the equations of motion of the
wall may be written as:

Radial projection:

ρwh
∂2ζr

∂t2
=

[
P − 2η

∂ur

∂r

]
r=R

− Eh

R(1 − σ2
p)

(
ζr

R
+ σp

∂ζz

∂z

)

+
ζr

R2
0

Tθ0 + Tt0
∂2ζr

∂z2
. (21)

Longitudinal projection:

ρwh
∂2ζz

∂t2
= −η

[
∂uz

∂r
+

∂ur

∂z

]
r=R

+
Eh

(1 − σ2
p)

×
(

∂2ζz

∂z2
+

σp

R

∂ζr

∂z

)
+

(
∂ζr

∂z

)(
Tt0 − Tθ0

R

)
,

(22)

where the left hand side of the equations represent
the inertia terms, the terms

[
P − 2η ∂ur

∂r

]
r=R

and −η[
∂uz

∂r + ∂ur

∂z

]
r=R

are the surface forces exerted by the fluid
on the vessel wall, and the stress-strain relations in the
isotropic Hookean wall are expressed as:

Tθ − Tθ0 =
Eh

(1 − σ2
p)

(
ζr

R
+ σp

∂ζz

∂z

)
, (23)

Tt − Tt0 =
Eh

(1 − σ2
p)

(
∂ζz

∂z
+ σp

ζr

R

)
, (24)

where Tθ denotes the circumferential stress and Tt the
tangential stress (Tθ0 and Tt0 are the initial stresses, before
the wave moves along the tube). Tensile stresses can be
assumed as uniformly distributed across the thickness of
the tube.

2.4 Boundary conditions

The velocity of the fluid particles on the wall must be
equal to the velocity of the wall:

ur =
∂ζr

∂t
and uz =

∂ζz

∂t
, for r = R. (25)

The displacements which correspond to the forced har-
monic oscillations described in equation (15) will have the
following form:

ζr(t, z) = C3 exp
[
iω

(
t − z

c

)]
,

ζz(t, z) = C4 exp
[
iω

(
t − z

c

)]
. (26)

3 Solution of the problem

The constants C1, C2, C3, C4 will be determined by solv-
ing the system of four equations obtained using (21), (22)
and (25), with the fluid velocity given by (15), (17) and
(18) and the wall displacements given by (26).
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This system can be written as:
⎡
⎢⎣

a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34

a41 a42 a43 a44

⎤
⎥⎦

⎡
⎢⎣

C1

C2

C3

C4

⎤
⎥⎦ =

⎡
⎢⎣

0
0
0
0

⎤
⎥⎦ , (27)

where the [aij ] factors are given by:

⎡
⎢⎢⎢⎢⎣

J1(iω
c R) Rω

cδ′√i

J1(δ
′i3/2)

J0(δ′i3/2) −iω 0
J0(iω

c R) 1 0 −iω

a31 a32 a33
Ehσpiω

Rc (1−σ2
p)

2ηωi
c J1(iω

c R) a42 a43 ρwhω2 − Ehω2

(1−σ2
p)c

2

⎤
⎥⎥⎥⎥⎦ ,

and

a31 =
ηc

ω

α′2

R2
J0

(
i
ω

c
R

)
− 2η

iω

c
J0

(
i
ω

c
R

)

+ 2η
1
R

J1

(
i
ω

c
R

)
,

a32 = −2ηiω

c

[
1 − 1

δ′i3/2

J1(δ′i3/2)
J0(δ′i3/2)

]
,

a33 = ρwhω2 − Eh

R2(1 − σ2
p)

+
Tθ0

R2
0

− ω2

c2
Tt0,

a42 = η

[
δ′i3/2

R
− Rω2

c2δ′i3/2

]
J1(δ′i3/2)
J0(δ′i3/2)

,

a43 = − iω

Rc

[
Eh σp

(1 − σ2
p)

+ Tt0 − Tθ0

]
. (28)

This system has a nontrivial solution if the determinant
of the coefficients of the system is equal zero. This means
that:

a11Δ11 − a12Δ12 + a13Δ13 = 0, where Δij is the
co-factor of the aij term.

Before expanding the determinant, we introduce addi-
tional hypotheses and numerical data (Tab. 1):

– the vessel wall is incompressible, so that its Poisson’s
ratio, σp, is 0.5;

– the vessel has no pre-stress: Tθ0 = Tt0 = 0;
– the wavelengths of the oscillations are very large com-

pared with the radius of the tube, meaning that ωR/c
� 1;

– the velocity of wave propagation in an incompressible,
inviscid fluid enclosed in a thin-walled elastic tube, c0,
is given by the Moens-Korteweg equation: c20 = Eh

2ρR .
Using the numerical values listed in Table 1, this yields
c0 = 9.76 m/s. The term ωR/c0 is thus of order 8 ×
10−3 and this justifies the long wavelength hypothesis.

Table 1. Numerical data used in the calculations of this paper.

Quantity Symbol Value
Radius of the vessel R 0.01 m
Cardiac frequency ω/2π 75 b.p.m.
Circular frequency ω 7.854 rd/s
Young modulus
of aortic wall E 106 Pa
Thickness of

the wall h 2 mm
Wall density ρw 1100 kg/m3

Blood density ρ 1050 kg/m3

Blood dynamic
viscosity η 4 × 10−3 Pa s

Blood electrical
conductivity σ 0.5 S/m

Magnetic permeability μ 4π × 10−7 H/m
Characteristic velocity
of blood in the aorta u0 0.4 m/s
Magnetic Reynolds

number Ru0σμ 2 × 10−9

“Classical” Womersley
number R

�
ω
ν

14.36

Moreover, the Bessel functions may be approximated
as:

J0

(
i
ω

c
R

)
≈ 1 and J1

(
i
ω

c
R

)
=

iωR

2c
. (29)

The quantity ρwhω2 may also be neglected in compar-
ison to 4Eh

3R2 .
Introducing a notation similar to that used by

Womersley [34],

F ′
10(δ

′) =
2J1(δ′i3/2)

δ′i3/2J0(δ′i3/2)
, (30)

the matrix (28) becomes

see equation (31) at the bottom of this page.

After some algebraic manipulations on the rows and the
columns of the determinant (following the method des-
cribed in Atabek and Lew [37]), we obtain the so-called
frequency equation (32), which unknown is the ratio
(c0/c).

16
3

(1 − F ′
10(δ

′))
(

c40
c4

)
+

(
c20
c2

) [
−8

3
(1 − F ′

10(δ
′))k

+
4
3
K(F ′

10(δ
′) − 4)

]
+ 2Kk +

δ′2

R2

Kν

ω
F ′
10(δ

′) = 0.

(32)

�
������

iωR
2c

Rωi
2c

F ′
10(δ

′) −iω 0

1 1 0 −iω

ρc − ηc
ω

iM2

R2 − ηiω
c

− ηiω
c

(2 − F ′
10(δ

′)) − 4
3

Eh
R2

2
3

Ehiω
Rc

− ηω2

c2
R η

�
δ′2i3

R2 − ω2

c2

�
R
2
F ′
10(δ

′) − 2
3
Eh iω

Rc
ρwhω2 − 4Ehω2

3c2

�
�����	

(31)
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Table 2. Solutions of the frequency equation (32): non-dimensional celerities for the two types of waves (Young mode, c1/c0,
and Lamb mode, c2/c0), obtained for selected values of the Hartmann number M . The moduli of the celerities c1 and c2 are
also given.

M 0 1.2 2 4 10 20
c1/c0 0.9611 + 0.0281 i 0.9609 + 0.0313 i 0.9605 + 0.0369 i 0.9571 + 0.0632 i 0.8836 + 0.2188 i 0.5604 + 0.3434 i
c2/c0 3.1329 + 0.3523 i 3.1333 + 0.3535 i 3.1340 + 0.3558 i 3.1371 + 0.3663 i 3.1493 + 0.4381 i 3.1201 + 0.6552 i

|c1| (m/s) 9.3843 9.3833 9.3814 9.3616 8.8844 6.4147
|c2| (m/s) 30.7698 30.775 30.7843 30.8261 31.0331 31.1164

Table 3. Correspondence between the B0 fields and the
Hartmann numbers, using the numerical data of Table 1.

M 0 1.2 2 4 10 20
B0 (T) 0 10.73 17.89 35.78 89.44 178.88

In equation (32), two non-dimensional coefficients, k and
K, have been introduced. They are defined as follows:

k =
ρwh

ρR
, and K =

(
αmagnetic

αWomersley

)2

=
α′2

α2

=
R2 ω

ν (1 − iM2

R2
ν
ω )

R2 ω
ν

= 1 − i
M2

R2

ν

ω
. (33)

In the case where M = 0 (no magnetic field), the para-
meter K = 1, and equation (32) reduces to the frequency
equation given by Atabek and Lew [37] (their Eq. (59)).

Equation (32) may be first considered as quadratic in
(c0/c)2, and then the square root of (c0/c)2 is taken. Con-
sequently, two of the solutions of equation (32) differ from
the other two only in sign, representing outgoing waves
traveling in the axial direction and the corresponding
incoming waves. Following Atabek and Lew [37], we con-
sider only the two outgoing waves, and denote by c1 and c2
their propagation velocities. The waves having the smaller
propagation velocity are generally referred to as the waves
of the first kind (Young mode, representing pressures
waves propagating in the fluid and associated with radial
displacement of the wall), while the other type of waves
are called the waves of the second kind (Lamb mode, rep-
resenting waves propagating in the vessel wall under blood
loading, associated with longitudinal displacement of the
wall). It is mainly the Young mode that is palpable at
wrist or neck arteries [39]. The Lamb mode is neglected
in most of the physiological situations, because the vessel
walls are tethered to the surrounding tissues, and their
longitudinal movements are thus limited.

The roots of equation (32) for the two types of waves
are given in Table 2, for selected values of the Hartmann
number M . These celerities will be commented in
Section 4. The correspondence between Hartmann num-
bers and B0 field values can be obtained using the data of
Table 1, and is presented in Table 3.

After determining the celerities c, it is necessary to go
back to the system of equations written in the form (27)–
(28), and try to solve it for the constants C1, C2, C3,
C4. However, since the determinant of the matrix given
in equations (27) and (28) equals zero, only three of this

four constants are independent (the matrix is reduced to
order 3). The constant C1 is choosen as the free parame-
ter because it is directly related to the amplitude of the
pressure perturbation (Eq. (16)). The system to solve is
now:

C1

[
iωR

2c
+

iωR

2c
F ′
10(δ

′)
C2

C1
− iω

C3

C1

]
= 0, (34)

C1

[
1 +

C2

C1
− iω

C4

C1

]
= 0, (35)

C1

[
ρc − ηi

(
ω

c
+

c

ω

M2

R2

)
+

ηiω

c
(F ′

10(δ
′) − 2)

C2

C1

− 4
3

Eh

R2

C3

C1
+

2
3

Ehiω

Rc

C4

C1

]
= 0. (36)

Solving by substitution, we obtain:

C2

C1
= − K − ωνi

c2[
−νiω

c2 (2 − F ′
10(δ′)) + 2

3
Eh

Rρc2 (1 − F ′
10(δ′))

] , (37)

C3

C1
=

R

2c
+

R

2c
F ′
10(δ

′)
C2

C1
, (38)

C4

C1
=

1
iω

(
1 +

C2

C1

)
. (39)

Finally, substituting equation (37) in (17) and (18), one
obtains the non-dimensional fluid velocities:

u∗
z(r)
C1

= 1 +
C2

C1

J0(δ′ r
R i3/2)

J0(δ′i3/2)
, because J0

(
iωr

c

)
≈ 1,

(40)

u∗
r(r)
C1

=
iωR

c

[
r

2R
+

C2

C1

1
δ′i3/2

J1(δ′ r
R i3/2)

J0(δ′i3/2)

]
,

because J1

(
iωr

c

)
≈ iωr

2c
. (41)

Similarly, substituting equations (38) and (39) in equa-
tion (26), the wall displacements can be expressed in terms
of C1:

ζr(t, z)
C1

=
C3

C1
exp

[
iω

(
t − z

c

)]

ζz(t, z)
C1

=
C4

C1
exp

[
iω

(
t − z

c

)]
. (42)
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A. Drochon: Sinusöıdal flow of blood in a cylindrical deformable vessel exposed to an external magnetic field

Fig. 2. Moduli of the amplitude of the non-dimensional axial velocity,



u∗

z(r)

C1




, for the two types of waves (Young waves, c = c1,

and Lamb waves, c = c2), and for different values of the Hartmann number M .

Using equations (40) and (41), it is easy to verify that the
velocities at the wall are the derivatives of the
corresponding displacements (calculated from Eq. (42))
with respect to time:

uz(R) = iωζz, and ur(R) = iωζr. (43)

This is of course consistent with the boundary condition
(25).

Besides, the mean axial velocity (amplitude) may be
calculated as follows:

u∗
z(r) =

1
πR2

∫ R

0

2πr × u∗
z(r)dr. (44)

After integration of equation (40), we obtain:

u∗
z(r)
C1

= 1 +
C2

C1
F ′
10(δ

′). (45)

Looking at equation (38), it appears that the amplitude
of the radial displacements is directly related to the flow
rate in the vessel, since we have:

C3

C1
=

R

2c

u∗
z(r)
C1

. (46)

A similar relation had been previously obtained by
Womersley [34]. It indicates that the amount of flow will
be proportionately greater in that vessel which is more
elastic. We also have:

u∗
r(R) =

iωR

2c
u∗

z(r). (47)

Equation (47) shows that the radial velocity at the wall is
also proportional to the flow rate.

4 Results and discussion

4.1 Wave celerities

The wave celerities (roots of Eq. (32)) are presented in
Table 2. First of all, it is important to mention that the
values obtained in the case M = 0 are in full agree-
ment with the values previously published in papers who
studied the propagation of pressure pulse in elastic ves-
sels without magnetic field [36,37,40,41]. As it is the case
in any of those papers, we find that the second type of
waves (Lamb waves), propagates much faster than the first
type of waves (Young waves). The celerity c1 obtained
in our calculation in the case M = 0 (9.38 m/s) falls
in the range of physiological values given by Wang and
Parker [42].

In the presence of a magnetic field (M �= 0), the celer-
ities c1 and c2 show inverse tendencies: the moduli of c1
decrease when B0 increases, whereas the moduli of c2 in-
crease. However, the impact of the magnetic field on c2 is
less important than on c1 (may be because we have ne-
glected any direct effect of the magnetic field on the wall
itself: the magnetic field acts on the fluid, which, in turn,
acts on the vessel wall). It is important to note that such
an effect becomes significant only for Hartmann numbers
higher than 4 (B0 ≈ 35 T). This means that any effects
are negligible in classical MRI examinations and measure-
ments (B0 = 1.5 or 3 T). We can also observe that, even
at very high Hartmann number (M = 20), the reduction
in c1 is about 30%. Such a range of values (6–10 m/s)
corresponds to the variability of the results obtained in
experimental measurements of pulse wave velocity with
MRI [8–11,43,44]. This dispersion would easily mask the
influence of the magnetic field, even at high B0.
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Fig. 3. Moduli of the amplitude of the non-dimensional radial velocity,



u∗

r(r)

C1

c
ωR




, plotted for the two types of waves (Young

waves, c = c1, and Lamb waves, c = c2), and for different values of the Hartmann number.

Fig. 4. The quantity �
�


u∗

z(r)

u∗
z(0)




 eiωt
�

is plotted for the deformable tube (solution of this paper – full lines) and for the rigid

tube (solution of Sud et al. [27] – dotted lines), for slow waves (celerity c1), and for different values of the Hartmann number
M . For practical reasons, a shortened notation has been used for the ordinates of the graphs.
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A. Drochon: Sinusöıdal flow of blood in a cylindrical deformable vessel exposed to an external magnetic field

Fig. 5. The quantity �
�


u∗

z(r)

u∗
z(0)




 eiωt
�

is plotted for the deformable tube (solution of this paper – full lines) and for the rigid

tube (solution of Sud et al. [27] – dotted lines), for fast waves (celerity c2), and for different values of the Hartmann number M .

4.2 Fluid velocities in the case M = 0: comparison
with the solution of Atabek and Lew [37]

In order to check the validity of our solution (Eqs. (40)
and (41)), we have plotted on the same graphs our solu-
tions, expressed in the particular case M = 0, and the
corresponding quantities given by Atabek and Lew [37].
This verification is presented in the Appendix.

4.3 Influence of the Hartmann number M on the
non-dimensional fluid velocities

The moduli of the amplitude of the non-dimensional axial
velocity,

∣∣∣u∗
z(r)
C1

∣∣∣, have been calculated using equation (40),
for the two types of waves (Young waves, c = c1, and Lamb
waves, c = c2). They are presented in Figure 2. The influ-
ence of M becomes significant for values of M higher than
4. As expected [32], the presence of an external magnetic
field tends to flatten the velocity profile, and the profile
becomes more and more different from Womersley’s pro-
file (M = 0). This is easy to understand, looking at the

non-dimensional numbers α′ (defined in Eq. (19)) and K
(defined in Eq. (33)). When M increases, α′ becomes more
and more different from the classical Womersley’s num-
ber: the effect of the magnetic field becomes preponderant,
when compared to the pulsatility effect. Since the vessel
is deformable, the velocity at the wall is not zero. How-
ever, the striking feature of Figure 2 is that, for the Lamb
waves, huge velocity values are obtained at the wall. Such
a result was previously obtained in the literature in the
absence of a magnetic field (see for example, Figs. 3a and
3c in Jagielska et al. [39], or Fig. 18 in Jones et al. [45]).
This is due to the fact that we did not introduce any kind
of longitudinal constraint on the vessel wall. However, the
effect is quite amplified in the presence of the magnetic
field.

In Figure 3 are presented the moduli of the ampli-
tude of the non-dimensional radial velocity. The quantity∣∣∣u∗

r(r)
C1

c
ωR

∣∣∣ is calculated from equation (41) and is plotted
for the two types of waves (Young waves, c = c1, and
Lamb waves, c = c2). As indicated in equation (41), the
profiles of the radial velocity always start from zero at
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Fig. 6. Dimensional radial velocities (moduli) for c = c1, for different values of the Hartmann number, and for different
amplitudes of the pressure perturbation (5 mmHg, 10 mmHg, 15 mmHg, 20 mmHg).

the axis. The Hartmann number does not seem to have
a great influence on these profiles in the case of the slow
waves (c = c1), but in the case of Lamb waves, some differ-
ences appear near the vessel wall for M higher than 4. Our
curves are quite similar to those of Figure 3d in Jagielska
et al. [39]. These authors studied the effect of some vis-
coelastic parameters of the tissues surrounding a vessel on
the wave propagation. The Lorentz force we study in this
paper opposes to the fluid motion in a manner that could
be comparable to the external elastic and viscous forces
they studied.

4.4 Comparison deformable tube/rigid tube

In order to see the impact of the deformability of the
vessel, we have plotted �

(∣∣∣u∗
z(r)

u∗
z(0)

∣∣∣ eiωt
)
, for the deformable

tube (Eq. (40) of this paper), and for the rigid
tube [27].

The solution of Sud et al. [27] may be written in the
form:

u∗
z(r)

u∗
z(0)

=
J0

(√
−M2 − iωR2

ν

)
− J0

(√
−M2 − iωR2

ν
r
R

)

J0

(√
−M2 − iωR2

ν

)
− 1

.

(48)

The results for the celerity c1 (resp. c2) are presented
in Figure 4 (resp. Fig. 5). In the case of the rigid tube,
the velocity at the wall is zero. This can more clearly
be seen in Figure 5, but of course, it is also the case in
Figure 4. The u∗

z(r) profiles for the deformable tube have
been previously commented in Section 4.3. As expected,
the main differences between the two solutions appear in
the vicinity of the wall, but, for the slow waves, this dif-
ference remains small.
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A. Drochon: Sinusöıdal flow of blood in a cylindrical deformable vessel exposed to an external magnetic field

Fig. 7. Dimensional radial velocities (moduli) for c = c2, for different values of the Hartmann number, and for different
amplitudes of the pressure perturbation (5 mmHg, 10 mmHg, 15 mmHg, 20 mmHg).

4.5 Influence of the amplitude of the pressure
perturbation

In order to evaluate the impact of the pressure perturba-
tion on the fluid velocity, we have choosen four different
levels of pressure perturbation: 5, 10, 15 and 20 mmHg.
These numerical values fall in the range choosen by other
authors. For example, Pontrelli and Tatone [46] took a
pressure perturbation amplitude of 19.5 mmHg.

Using equation (16), and considering that, in the whole
section of the vessel, J0( iωr

c ) ≈ 1, it is possible to calcu-
late the constant C1 for any fixed value of P ∗(r), and
for each celerity c. Considering then equation (37), it ap-
pears that the ratio C2/C1 does not itself depend on the
pressure perturbation (it depends on M , on the celerity
c (who, itself, depends on M) and on the fluid and ves-
sel characteristics). Consequently, it is easy to see from
equations (40) and (41) that u∗

z(r) and u∗
r(r) will be

directly proportional to C1, i.e. to the pressure amplitude
P ∗(r). This proportionality can be checked in the graphs
of results (Figs. 6–9). As regards the axial and radial
velocity profiles presented in Figures 6–9, they are

similar to the non-dimensional ones that have been dis-
cussed in Section 4.3.

However, the results are now dimensional and it may
be instructive to look at their order of magnitude:

– Moduli of the radial velocity:

For the Young waves (Fig. 6), we obtain 0.26 mm/s
at the wall for a pressure perturbation of 5 mmHg, and
1.05 mm/s for a pressure perturbation of 20 mmHg. The
influence of the Hartmann number on these values is not
significant, even for M = 10 or M = 20.

For the Lamb waves (Fig. 7), the velocities at the
wall are lower by a factor at least 10: from 17.8 μm/s
to 71 μm/s, in the case M = 0. In the case M = 20, the
range of the values at the wall is: 16–64 μm/s. But, as we
previously mentioned in Section 4.3, the velocity profile in
the case M = 20 is not the same as for lower values of the
Hartmann number.

– Moduli of the axial velocity:

For the Young waves (Fig. 8), the order of magnitude of
the velocities is now cm/s: from 6.8 cm/s to 27 cm/s on
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Fig. 8. Dimensional axial velocities (moduli) for c = c1, for different values of the Hartmann number, and for different amplitudes
of the pressure perturbation (5 mmHg, 10 mmHg, 15 mmHg, 20 mmHg).

the axis of the vessel and from 1.61 cm/s to 6.4 cm/s
at the wall, in the case M = 0. These values are re-
duced for high Hartmann numbers. For example, in the
case M = 20, we obtain values ranging from 4.5 cm/s to
18 cm/s on the vessel axis and from 1.01 cm/s to 4.04 cm/s
at the wall. As in Section 4.3 and in our previous works
[28,32], we observe that the presence of an external mag-
netic field tends to reduce the blood flow and flatten the
velocity profile and that the pulsatile character of the flow
is dampened.

In the case of Lamb waves (Fig. 9), the velocities on
the axis (from 2.06 cm/s to 8.25 cm/s, in the case M = 0)
are lower than those of Young waves. However, they are
much higher and not realistic at the wall (from 14.9 cm/s
to 59.6 cm/s). The velocities on the axis are reduced for
high Hartmann numbers, but they are increased at the
wall. For example, in the case M = 20, we obtain values
ranging from 0.93 cm/s to 3.74 cm/s on the vessel axis
and from 16.38 cm/s to 65.52 cm/s at the wall.

Our values, especially the values for the axial velocity,
are higher than those obtained by Jagielska et al. [39].
But these authors have choosen a very small pressure

amplitude perturbation (1 Pa) for their calculations.
Zhang et al. [47] also considered the hypothesis that the
surrounding tissue of a blood vessel can influence the bio-
mechanics of the vessel. With an amplitude of 40 mmHg
for the pressure oscillations, they obtain axial fluid
velocities of order 40 cm/s and radial flow velocities of
order 0.5 mm/s. These orders of magnitude are in agree-
ment with ours (considering that our pressure amplitudes
are lower than 40 mmHg). More recently, Warriner
et al. [48] developed a visco-elastic model of arterial wall
motion in pulsatile flow, motivated by the need for a real-
istic Doppler ultrasound clutter model. Their calculations
provide values of the radial velocity at the wall around
0.1 cm/s (same order of magnitude as us) and longitudi-
nal velocities around 0.5 cm/s (10 times smaller than our
results). However, they implemented in their equations
some additional terms that account for the wall visco-
elasticity and for the wall tethering. This last point may
explain the gap between their results and ours. Surpris-
ingly, they do not mention the existence of the second type
of waves (Lamb waves). They neither indicate very clearly
the pressure amplitude they have choosen (8 mmHg).
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A. Drochon: Sinusöıdal flow of blood in a cylindrical deformable vessel exposed to an external magnetic field

Fig. 9. Dimensional axial velocities (moduli) for c = c2, for different values of the Hartmann number, and for different amplitudes
of the pressure perturbation (5 mmHg, 10 mmHg, 15 mmHg, 20 mmHg).

Table 4. Values of the damping factor over a wavelength,
exp(−2πY/X), for different Hartmann numbers and for the
two modes of wave propagation.

M = 0 M = 1.2 M = 2 M = 4 M = 10 M = 20
Young
waves

(c = c1) 0.8322 0.8149 0.7855 0.6604 0.21 0.0213
Lamb
waves

(c = c2) 0.4933 0.4922 0.4900 0.4801 0.4175 0.2673

4.6 Wall displacements: propagation and damping
of the waves

In order to study the wave propagation and damping, we
considered the wall displacements given by equation (42),
for a pressure perturbation of 10 mmHg. The pulsatile
term exp[iω(t − z

c )] may be developed as exp(iωt)

Table 5. Values of the wavelengths corresponding to the celer-
ities that are solution of our problem, for different Hartmann
numbers and for the Young mode.

M = 0 M = 1.2 M = 2 M = 4 M = 10 M = 20
λ (m) 7.5 7.5 7.499 7.47 6.9 4.37

exp(−iω z
c ). Using the notations of Womersley [34] and

of Atabek and Lew [37], we express the complex roots of
equation (32) as:

c0
c

= X − iY. (49)

We then have: exp(−iω z
c ) = exp(−iω zX

c0
) exp(−ωz Y

c0
).

Inverting equation (49), we get: c
c0

≈ 1
X + i Y

X2 , if
Y 2

X2 � 1. The real part of c is thus c0/X; it is the propaga-
tion velocity and the associated wavelength is: λ = c0

X T .
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Fig. 10. Real part of |C3| exp[iω(t − z
c
)] (dimensional radial displacements) for c = c1, for different values of the Hartmann

number, and for different positions on the longitudinal axis.

Since ω = 2π/T (T = period of the pulse), we finally
get:

exp
[
iω

(
t − z

c

)]
= exp (iωt)

× exp
(
−2πi

z

λ

)
exp

(
−2π

z

λ

Y

X

)
.

(50)

The last term of the right hand side of equation (50) is
a real number and it gives the amount of damping per
wavelength: when z = λ, this term equals exp(−2πY/X).
This attenuation factor thus depends on the real and imag-
inary parts of the celerities, who, themselves, depend on
the Hartmann number. This appears clearly in Table 4. In
the case M = 0, the damping effect is more pronounced
for Lamb waves. However, for this type of waves, it is less
sensitive to the magnetic field intensity than for the Young
waves. One must also keep in mind that the wavelengths
corresponding to the celerities that are solutions of our
problem (celerities given in Tab. 2) are quite large when
compared to the lengths of arteries. These wavelengths

are given in Table 5 for the Young mode. Consequently,
at typical places of palpation of the pulse wave amplitude
(i.e., over a few centimeters or tens of centimeters), this
damping effect will be hardly perceptible.

The real part of
∣∣∣C3
C1

C1

∣∣∣ exp[iω(t− z
c )] = |C3| exp[iω(t−

z
c )] (radial displacements) is plotted in Figure 10 (Young
waves) and in Figure 11 (Lamb waves), and the real part
of |C4| exp[iω(t − z

c )] (axial displacements) is plotted in
Figure 12, for the Young waves. Similar graphs have been
obtained for the axial displacements in the case of Lamb
waves. They are not shown here, since the numerical values
(up to 4 cm) are not physiologic at all.

Looking at the larger ordinates in each graph, it is pos-
sible to estimate the relative proportion of the displace-
ments: for Young waves, the ratio of radial displacements
upon axial displacements is of order 1.6 × 10−2

(67 μm/4.13 mm); for Lamb waves, the ratio of radial dis-
placements upon axial displacements is of order 1.2×10−4

(4.5 μm/3.8 cm); the ratio of radial displacements for slow
waves upon radial displacements for fast waves is about
14.8 (67 μm/4.5 μm) and the ratio of axial displacements
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Fig. 11. Real part of |C3| exp[iω(t − z
c
)] (dimensional radial displacements) for c = c2, for different values of the Hartmann

number, and for different positions on the longitudinal axis.

for slow waves upon axial displacements for fast waves is
about 0.11 (4.13 mm/3.8 cm).

As expected, the Young mode has a more radial char-
acter and the Lamb mode has a more longitudinal
character.

The literature papers addressing the question of ves-
sel wall motion may be classified in two groups: (i) other
models, and (ii) experimental works using magnetic res-
onance imaging or ultrasonic methods. As regards the
results of other models, we note that Zhang et al. [47]
obtain radial displacements of order 200 μm in response
to a 40 mmHg pressure perturbation, which is in very good
agreement with our data. Warriner et al. [48] provide data
for the carotid artery: maximum radial distension from
100 to 200 μm yielding percentages of diameter variation
around 5–10% (which is somewhat higher than our 1%).
These authors also give results for the longitudinal wall
motion (with wall tethering): about 200–300 μm, i.e., 10
times smaller than our 4 mm, without wall tethering. More
recently, Bukac and Canic [49] developed a mathematical
model in order to capture both longitudinal and radial

displacements of the wall. They report that the two com-
ponents are of the same magnitude. Besides, direct mea-
surements of the wall motion have been performed using
non-invasive vascular ultrasound. For example, Reneman
et al. [50] studied the loss of compliance of the carotid
artery with age. They found that the carotid diameter
(about 6 mm) did not change very much for older persons,
but the relative distensibility (Δd/d) decreased from 13%
to 5% (5% of 6 mm yields a diameter variation of 0.3 mm,
i.e., a radial displacement of 150 μm, which is not so far
from our 70 μm).

Ramnarine et al. [51] obtained radial displacements of
the carotid wall ranging from 500 to 100 μm, depending
on the degree of stenosis of the artery (severe stenoses are
associated with local wall stiffening and reduced defor-
mation of the vessel). Cinthio et al. [52] measured longi-
tudinal movements and diameter change of the common
carotid artery of 10 healthy humans, using a new high-
resolution non-invasive ultrasonic method. They found
longitudinal motions around 0.5 mm, and diameter
changes of the same magnitude (around 0.65 mm).
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Fig. 12. Real part of |C4| exp[iω(t − z
c
)] (dimensional axial displacements) for c = c1, for different values of the Hartmann

number, and for different positions on the longitudinal axis.

They also performed the measurements for the aorta and
obtained longitudinal movements as important as 1 mm,
and relative diameter changes about 9%. However, the
mechanisms responsible for these longitudinal movements
are not clarified, although the shear force from the blood is
probably of utmost importance. More recently, Bell
et al. [53] performed magnetic resonance imaging in a large
population and they measured aortic longitudinal and cir-
cumferential strains. They found that both types of strains
remain lower than 10%, and that they are not independent
from each other (see their Fig. 1). Both studies [52,53] con-
clude that the measure of longitudinal wall displacements
may become a novel marker of vascular hemodynamics
and biology and, accordingly, of atherosclerosis and vas-
cular disease.

5 Conclusion

In spite of the numerous restrictive assumptions, the
solution presented here appears to describe reasonably

well some important features of the magnetohydrody-
namic flow of blood in an elastic vessel. It is demon-
strated that the external magnetic field has an influence
on the wave celerities in the fluid and in the vessel wall, on
the fluid velocity profiles, and on the wall displacements.
It tends to reduce the blood flow and flatten the velocity
profile. The pulsatile character of the flow is also damp-
ened. However, these effects become detectable for high
values of the Hartmann number (M > 4, corresponding
to B0 > 36 T with numerical data pertaining to large
human arteries) and remain negligible in the context of
magnetic resonance imaging (B0 ≤ 3 T, or even 7 T).

The author wants to thank several students who helped her for
the graphs (Matlab tracings): Stephen Ozanne and
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Appendix

In order to check the validity of our solution (Eqs. (40) and
(41)), we have plotted on the same graphs our solutions,
expressed in the particular case M = 0, and the corresponding
quantities given by Atabek and Lew [37].

In Atabek and Lew [37], our term u∗
z(r)/C1 is given by:

u∗
z(r)

C1
= 1 + m

J0(α0
r
R

)

J0(α0)
, (A1)

and our term u∗
r(r)/C1 is given by:

u∗
r(r)

C1
=

iωR

c


r

2R
+ m

J1(α0
r
R

)

α0J0(α0)

�
, (A2)

where: m = 3Rρc2

2Eh(F10−1)
and α0 = i3/2R

�
ω
ν

(their constant A

is equivalent to ρcC1 in our notations).
Equations (A1) and (A2) have been both plotted for the

two types of waves (celerity c1, and c2). Only one illustrative
graph is shown here (Fig. A1), but a perfect fit between the
two solutions has been also obtained in the three other graphs.

This result is not surprising if we consider the limiting case
M = 0 in our equations: we have K = 1, and since (ων/c2)
is very small, the ratio C2/C1 given by equation (37) in this

Fig. A1. Real part of the non-dimensional axial velocity
u∗

z(r)/C1 for the celerity c = c1 (Young mode). Comparison
between our solution in the particular case M = 0 and the
solution of Atabek and Lew [37].

paper turns out to be the “m” of Atabek and Lew [37] (since,
in that case, our quantity F ′

10 reduces to their “F10”).
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