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1.1 Introduction: State of the art of Cooperative Local-
ization for Multi-Robots Systems

In this Chapter, we propose a new formulation of multi-vehicles cooperation
based on sharing GNSS corrections, as a way to extend the principle of Dif-
ferential GPS (DGPS) to dynamic reference base stations. We present a new
cooperative algorithm for vehicles positioning based on set inversion method
with Constraint Satisfaction Problem (CSP) techniques on intervals. When
using V2X communications, vehicles cooperate and exchange information such
that each vehicle can compute the positions of the partners with a reliable do-
main. The ego-motion of every vehicle can also be used to improve the coop-
eration. The proposed method relies on the exchange of positions estimates,
pseudorange estimated errors and Dead-Reckoning (DR) data (see Fig. 1.2).
A first contribution of this work is to show that it is possible to improve the
ego positioning and mutual localization between vehicles by sharing GNSS bi-
ased pseudoranges using a model of the correlation of the pseudorange errors
and through the knowledge of the local motions of the vehicles done by DR or
tracking. In the following, an introduction provides an overview of the most
recent developments or work in cooperative localization over the last decade.
In particular, we will introduce four variants in the architecture of cooperative
localization. The section 1.2 will introduce a system modeling and an observ-
ability study of the cooperative system. Then, in section 1.3, the proposed
distributed estimation method is presented. It allows the data fusion of the
estimated biases in a distributed way with no central fusion node and with
no base station. An experimental evaluation with two vehicles is performed
in section 1.4 to evaluate the performance in real conditions using a ground
truth system. The performance of the cooperation is clearly highlighted. A
classical sequential Bayesian method has also been implemented on the same
data set and is compared in terms of accuracy and confidence.

1.1.1 Centralized Cooperative Estimation

There are two architectures of cooperative systems: centralized and decentral-
ized. Many variants of cooperative positioning systems are essentially based
on centralized systems. Centralized system performs state estimation using
a central,fixed unit. This centre communicates with all robots of the group.
The principle of centralized estimation includes the state estimation of each
robot in a unique state vector of the group. The update of the state of each
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robot is performed through treatment of sensor data collected from each robot.
This data can be egocentric (i.e. proprioceptive) or observational (i.e. exte-
roceptive). Egocentric data includes robots motions or their absolute pose.
Observational data is can be inter-robot or environmental or external data,
such as the relative pose between robots or the range between robots and
obstacles.
Hereafter, a state of the art in cooperative localization through centralised
architecture is given.
The most significant developments or progress in cooperative positioning has
been achieved by Roumeliotis and Bekey [1], who presented a cooperative sys-
tem for positioning of a fleet of mobile robots using a centralized approach.
In this approach, they used an Extended Kalman Filter to update the state
of the fleet. Several cooperative approaches have extended Roumeliotis and
Bekeys research to study, for example, the impacts of using relative data such
as orientation measurements and relative distances in the fleets state update
process [2] or furthermore, the propagation of uncertainties [3]. Data fusion
methods are not limited to the Kalman filter; other tools are proposed, such
as the Posterior Maximum Estimator [4] and the Maximum Likelihood Esti-
mation [5]. Some applications use other types of sensors for example other
research proposes to update the robots states using acoustic or visual sensors.
A camera that measure relative orientation was used in a cooperative posi-
tioning method in [6]. Acoustic waves were used to measure the relative pose
between robots [7].
Centralized approaches have advantages, such as the simplicity of the central-
ized merger of the data collected from each robot, allowing for an optimal
update of the state of the group. The interdependencies are handled in a
natural way as the data are only merged once time in the CPU, so there is
no risk of the reuse of an identical information in the merge process. How-
ever, in practice, centralized approaches have disadvantages related to the
communication constraints with the central unit. The robots have to main-
tain permanent contact with the infrastructure. They must be close since
the range of the communication systems is often short since it depends on
deployment provided by the phone provider, which limits the robots area of
evolution. The more remote the network access point, the greater the loss in
energy level of data transmission. The rate of transmission decreases also with
more data users in the same area. In order to overcome these disadvantages,
the centralized architecture has evolved into a multi-centralized architecture.
As a way to expand the robots area of evolution, mobile agents gathering
information are used as intermediaries between the mobile robots and the in-
frastructure. In the multi-centralized localization context, Worrall and Nebot
have used multi-hop communications to transmit real-time vehicle state in-
formation to other vehicles [8]. However, an isolated agent problem occurs
when the environment is large and sparsely populated. One possible solu-
tion to this problem is to use additional mobile agents that navigate near
the isolated agent to collect updates of state information and bring them to



4Cooperative Localization For Autonomous Vehicles sharing GNSS measurements

the main network [9]. However, in these proposed solutions, the centralized
system always depends on the infrastructure and therefore a failure of the in-
frastructure impacts the whole system. Given the technological evolution and
the availability of embedded computers in several kinds of robots, researchers
have started to examine how to get rid of the central system and to distribute
the estimated pose of the group within its members. This type of architecture
is called distributed or decentralized architecture.

1.1.2 Decentralized Cooperative Estimation

In a distributed fusion system, each vehicle processes its measurements and
communicates the results with the other vehicles. The distributed architecture
does not have a central server sharing information with the members of the
group. The basic concept of distributed cooperative localization is the same
as the centralized approaches.
The vehicles in the group are considered as a system of systems that uses
data from each member. However, in this case each agent has a version of
the state of the group which it updates with its own information and with
the shared data from its partners. This kind of architecture was introduced
by Roumeliotis et al [10]. The authors propose a cooperative localization
system based on an Extended Kalman Filter. This approach is based on
the modification of the Kalman Filter equations to distribute them to the
different members of the group. This method enables the production of the
same result as a centralized estimator. Other works have been inspired by this
approach and propose solutions based on different sensors and mathematical
tools for fully distributed information fusion. The distributed approaches can
be divided into two broad categories according to the type of shared data
between vehicles :

• Approaches based on the exchange of sensor measurements.

• Approaches based on the exchange of fused states or parts of them.

In the following, each type of approach is described by providing some exam-
ples from the literature. The concept of sensor-based exchange approaches is
that each vehicle has to send its measurements to all its partners in order to
have an updated version of the status in each vehicle.
For example, Hery et al. [11] proposed a cooperative localization method
based on state exchange to improve the along-track position of vehicles. The
vehicles are using relative measurements from perception sensors such as Li-
dars. They introduced a one-dimensional formulation of the localization prob-
lem under the hypothesis that lateral distances and headings of vehicles are
well known. Madhavan et al. presented a distributed system of cooperative
localization of heterogeneous mobile robots in [12]. The proposed approach
has been applied on a fleet of two mobile robots. The cooperation is carried
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out by shared information about the relative pose that contains the distances
between both robots, the relative orientation, and the absolute position, which
contains GPS and proprioceptive measurements. Thanks to the exchange of
data, each robot has a state version of the group. In this case, the need
for permanent availability of communication between the robots is essential.
Moreover, the amount of data to be shared increases according to the number
of robots used in the group and the sensor rates. The estimates produced by
each robot are suboptimal compared to a centralized estimator. Fox et al.
[13] have adopted a similar approach to [12] in the sense that each robot has
to maintain an estimate of its own pose. They used a Particle Filter method
instead of an Extended Kalman Filter and a density tree approach for the
fusion of the relative shared data. This approach temporarily combines the
probability density functions (i.e, particles) from both robots to perform a
sampling of importance.
In fused state exchange approaches, each robot only uses its own sensors to
update the state of the group and only shares its final result. This type of
approach limits the amount of exchanged data. However, these approaches
suffer from the problem of data incest. This problem is due in particular
to the re-use of the same information in the fusion process. The estimates
obtained after the fusion in this case are biased and overconfident. Indeed, the
problem of data consanguinity generates a problem of over-convergence which
comes from the ignorance of the correlations between the estimates of robots.
Several solutions to the data incest problem have been proposed. For example,
Howard et al. have used an approach based on the exchange of measured pose
distributions, where each robot estimates the positions of the others robots in
the group regarding its own position using the measurements of a camera and
a laser ranging [14]. The fusion of shared information is performed using a
Particle Filter. After the data exchange, each robot updates the distribution
of its pose with the one received from the detected robot. In order to avoid the
problem of circular updates, the author keeps up to date a dependency tree
in order to only update the descendants with data that has not been merged
before. Other solutions are proposed by Roumeliotis et al. and Karam et al.
[15, 3]. In [3], robots only share a part of their state and, during the fusion
process, only a part of the collected information is considered. In this case,
the obtained fused state contains suboptimal estimates since we do not use
all the shared information. In [15], the overall state of the system combines
all local states collected by all members of the group and the global state is
only used by local robots but never communicated again to other members.
However, this work does not address the consistency / integrity of the esti-
mates. The covariance intersection method represents a solution of the data
incest problem since it manages the dependencies between estimates and at the
same time, offers reliable confidence domains. The above-mentioned methods
are all based on Bayesian approaches (Extended Kalman Filter) or Particle Fil-
ter. Other fusion approaches can avoid the problem of over-convergence while
guaranteeing results with reliable confidence domains, such as set-membership
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approaches [16, 17, 18, 19]. This will be the following approach in this study,
in particular the set-membership method based on interval analysis.

1.1.3 Common Methods for Estimation (i.e. Localization)

The set-membership approach is based on the assumption that errors of mod-
els and measurements are bounded. It has been successfully applied for the
estimation of model parameters [20] and the estimation of robot positions
when reliable confidence domains are required [21]. Meizel et al. [22] devel-
oped a Set Inversion method by using Interval Analysis techniques (SIVIA)
based on bounded error observers for the localization of one robot. How-
ever, SIVIA is not suitable for real-time applications when the initial area
of research is too large, which leads to increase the number of bisections in
the computation process. One solution is to use SIVIA while simultaneously
solving a constraint satisfaction problem (CSP) to limit the calculation time
of bisections [23]. Regarding real-time cooperative localization, several recent
studies based on set-inversion with the CSP techniques were studied. Drevelle
et al. [24] operated a group of autonomous underwater vehicles (UAV) to ex-
plore a large area. In their application, they used ranging sensors to measure
the inter-distance between robots.
In addition, Bethencourt [24] used distributed set-membership algorithms to
accomplish a cooperative mission of a group of UAVs using inter-temporal
measurements. Kyoung-Hwan and Jihong also studied a cooperative local-
ization method for several ground robots based on constraint propagation
techniques [25]. In this work, the fusion of proprioceptive and exteroceptive
sensors data was performed. In summary, considerable work has been done in
simulation of cooperative systems, but very few results using real data have
been reported. Finally, little work has been done to evaluate the performance
of the integrity of estimates from low-cost sensors.

1.1.4 Technologies for Positioning

Localization is used in many fields, such as by sailors who need to know
their absolute position regularly. Today, many consumer applications have
appeared which utilize localization. The list of applications is very wide and
new uses have appeared regularly in recent years. In the field of robotics, lo-
calization can guide robots in difficult places that are inaccessible or contam-
inated to perform different tasks autonomously. In Intelligent Transportation
Systems (ITS), localization is an essential task for the navigation of intelligent
vehicles. Whether localization is employed to inform the user of his position
in order to guide him, or for autonomous control, the vehicle must be able to
localize itself in its environment.
There are different technologies for positioning mobile robots in a free space.
They are based on communicating systems that use transmitters (e.g. ground
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infrastructure such as beacons) and receivers (e.g. GPS, UWB: Ultra Wide
Band, WiFi, Bluetooth, RFID, etc.), or on embedded sensors for navigation
(e.g. MEMS, camera, etc) without relying on infrastructure or the combina-
tion of communicating systems with autonomous sensors. Among the most
widespread technologies based on ground infrastructure, there are systems us-
ing radio positioning techniques based on phone networks or wireless networks
(e.g. UWB, WiFi, etc..), where the mobile object is localized using the sig-
nals it transmits to the network ( e.g. 2G, 3G, WiFi, RFID etc..) or receives
from base stations or access points in that network. The main disadvantage
of these methods is that their coverage area is limited. Geopositioning by
satellite navigation systems ( e.g. GNSS: Global Navigation Satellite System)
offers the benefit of global coverage with a constellation of satellites in orbit
(although some systems, based on geostationary satellites, have only regional
coverage). Since the first satellite system, Global TRANSIT commissioned in
1967, other systems have been developed. The NAVSTAR GPS, GALILEO,
GLONASS and BEIDOU systems are thus currently operational or being de-
ployed. These systems provide absolute positioning with an accuracy of ten
meters, for a reasonable cost. However, satellite techniques are not effective in
urban environments and closed environments causing errors of several dozen
meters. An alternative method is the hybridization of GNSS positioning with
other sources of information such as inertial measurements (e.g. speed and
orientation measurements), relative location based on the detection of bea-
cons (e.g.UWB, radar) or geometric elements of the route (e.g a map). Dead
Reckoning (DR) sensors and inertial sensors are frequently used as alterna-
tive technologies for determining position, speed and attitude. They are very
common and measurements can easily be collected, for example from a CAN
bus embedded on a car.
We are interested in a hybrid method that combines ground and satellite ra-
dionavigation systems with DR sensors. The technologies considered in this
chapter for the positioning of vehicles are the fusion of DR measurements with
radio navigation measurements such as GNSS pseudorange measurements. In
the following, a mutual cooperation through information exchange is used to
enhance positioning accuracy of a group of autonomous vehicles. We aim
also to reduce uncertainty arising from the use of low cost sensors. For ex-
ample, mono-frequency Global Navigation Satellite Systems (GNSS) receivers
in complex environments usually leads to offsets between real and observed
positions (Fig. 1.1). These systematic offsets (i.e, biases) are often due to in-
accurate satellite positions, atmospheric and tropospheric errors. The impact
of these biases on vehicles localization should not be neglected. Cooperation
and exchange of biases estimates between vehicles can reduce significantly
these systematic errors [26]. However, distributed cooperative localization
based on sharing estimates is subject to data incest problems. When position
information is used in a safety-critical context (e.g. autonomous vehicles nav-
igation in proximity), one should guaranty the consistency of the localization
estimates. In this context, we mainly aim to improve the absolute and rela-
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tive performances of vehicles localization through cooperation. Moreover, we
focus on characterizing reliable confidence domains (see Fig. 1.1) that contain
vehicles positions with high reliability.

1.2 System Modeling and Observability Analysis For
Cooperative Vehicle Systems

Here we present the mathematical models used to determine the positions
of autonomous systems. We will present basic models which are the most
common in robotic applications. Then, we will present a dynamic observabil-
ity study based on Lie Derivatives. Observability studies are essential step
for the localization of vehicles. One should check if the vehicles positions
and measurements biases can be determined before the development of any
observer.

1.2.1 Modeling of Systems

1.2.1.1 Sensor Model or Distances (i.e. Pseudo-distances) Mea-
surements

The GNSS raw measurements considered here are L1 pseudoranges. The
pseudorange ρji [27] is the measure of each vehicle Ri (i = {1, . . . , nr}) located
at coordinates pi = [xi, yi, zi] to each satellite j (j = 1, . . . , ns) at position
pj = [xj , yj , zj ]. We model the common GNSS errors bj as additive errors on
the pseudoranges. The model of ρji is expressed in Eq. (1.1). Please refer to
[28] for further details.

ρji =
√
(xi−xj)2+(yi−yj)2+(zi−zj)2+bj+di + βj (1.1)

where di represents the receiver clock offset and βj the measurement noise.
Let iy ∈ Rns be the vector of ns pseudoranges measurements and ix ∈ Rn
be the state vector of vehicle i. The observation model at discrete time k is
defined as follows

iyk = g(ixk) (1.2)

Suppose that each vehicle is equipped with a GNSS receiver and DR sensors
that provide speed and heading in an input vector iu(t) = [ vi ψi ]T .
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1.2.1.2 Vehicles

A 2D unicycle evolution model for the pose components, a linear model for the
receiver clock offset and an auto-regressive (AR) model for the pseudoranges
errors are concatenated and described by a continuous function f in a local
East North Up frame (time t is omitted for clarity):

f(ix, iu) =

{
ẋi = vi cos(ψi); ẏi = vi sin(ψi); żi = 0

ḋi = dri; ˙dri = 0; ḃj = a bj
(1.3)

di and dri are respectively the receiver clock offset and its drift to be estimated.
The AR parameter is a = e−Te/τ , Te being the sampling time and τ the time
constant of the model bias bj (a = 0.9995, τ = 6.2min). The indexes of the
vehicles and common satellites are respectively denoted by i ∈ {1 . . . nr} and
j ∈ {1 . . . ns}.

1.2.2 Observability Study

1.2.2.1 Definitions and theorems

Errors on pseudorange measurements are spatially correlated and similar for
nearby users [27] but not directly observed with no base station. Therefore,
it is essential to study the observability to evaluate if the problem is solvable.
Rife and Xiao [29] have shown that it is not possible to estimate biases simply
by sharing GNSS pseudorange measurements between vehicles communicating
via a Vehicle-to-Vehicle (V2V) network in a snapshot way (Epoch by Epoch).
They highlighted the limitation of distributing only GNSS data and proposed
to add georeferenced information by using camera-based lane boundary sensor.
A natural question that arises is whether GNSS biases are observable when
adding vehicles motion information and errors evolution model.
In this section, we investigate the observability of the cooperative localiza-
tion problem of vehicles sharing biases estimates when they are moving. The
cooperative system described in section 1.2.1 given DR and pseudorange mea-
surements is nonlinear. Therefore, we use the observability rank criterion
based on Lie-Derivatives [30] to determine the conditions under which the
system is locally weakly observable. Note that Martinelli and Siegwart [31]
have employed this criterion to investigate the observability of 2D coopera-
tive localization of mobile robots. Recently, Zhou et al. [32] have used the
Lie derivatives to determine the conditions for the observability of 2D relative
pose of pairs of mobile robots using range measurements. In the sequel, a test
of Lie derivatives is considered for vehicles sharing GNSS errors. This study
is inspired by the work of Zhou et al. [32].

Definition 1. (Observability Rank Condition): The observability rank con-
dition is satisfied when the observability matrix is full rank.
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Theorem 1. (Observability Sufficient Condition): If the system satisfies the
observability rank condition at a given state x0 (at some time), then the system
is locally weakly observable at x0 [30].

1.2.2.2 Dynamic case study

Let consider nr vehicles and ns common visible satellites. Let x̂ be the esti-
mated state of the cooperative system (S) as follows

x̂ = [p̂1, d̂1, . . . , p̂nr
, d̂nr , b̂

1, . . . , b̂ns ]T (1.4)

with dim(x̂) = 4nr + ns. p̂1···nr
are the 3D vehicles positions, d̂1···nr

rep-
resent the receivers clock offsets. (b̂1···ns) denote the biases on ns common
pseudorange measurements between vehicles.
The considered evolution model in this study consists in the first four DR
equations of the system (1.3) and the last equation for the evolution of biases.
Let consider u = [v1 . . . vnr

]T the input of the system (S) in (1.4). The non-
linear DR model of (S) can be written as follows

ẋ =

f0︷ ︸︸ ︷

0
0
0
dr1

...
0
0
0

drnr

a b1

...
a bns



+

f1︷ ︸︸ ︷

cos(ψ1)
sin(ψ1)

0
0
...
0
0
0
0
0
...
0



v1 + · · ·+

fnr︷ ︸︸ ︷

0
0
0
0
...

cos(ψnr )
sin(ψnr )

0
0
0
...
0



vnr (1.5)

The nonlinear observation equations are given by

y =

n
s
×
n
r





∥p1 − p1∥+ d1 + b1

...
∥p1 − pns∥+ d1 + bns

...
∥pnr

− p1∥+ dnr + b1

...
∥pnr

− pns∥+ dnr + bns


(1.6)

We compute hereafter the necessary Lie derivatives of y and their gradients:
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Zeroth-order Lie derivatives (L0y):

L0y = y

with gradient:

∇L0y = jacobian(y)

= G =

n
r
×
n
s



G 0 · · · 0 I
0 G · · · 0 I
...

...
. . .

...
...

0 0 · · · G I



4nr+ns︷ ︸︸ ︷
(1.7)

where I is the identity matrix with dim(I) = ns × ns and G is the geometry
matrix described in [29] where G is defined as follows:

G =


(u1)T 1
(u2)T 1

...
...

(uns)T 1

 (1.8)

with dim(Gi) = ns × 4, the unit vector uj in G is the estimated line of sight
from the satellite j to each user receiver i. This pointing vector is the same
for all users when they are assumed to be in close proximity (i.e. distance
between vehicles ≤ 10km):

uj = (pi − pj)/∥pi − pj∥. (1.9)

First-order Lie derivatives (L1
f0
y):

L1
f0

y = ∇L0y · f0 =

n
s
×
n
r





a b1 + dr1
...

a bns + dr1
...

a b1 + drnr

...
a bns + drnr


with gradient:
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∇L1
f0

y =

n
s
×
n
r




4nr︷︸︸︷
0

ns︷︸︸︷
aI

...
...

4nr︷︸︸︷
0

ns︷︸︸︷
aI


The observability matrix is now:

O =

[
∇L0y
∇L1

f0
y

]
. (1.10)

The role of the matrix in Eq. (1.10) in the observability analysis of a nonlinear
system is given in [30], and recalled in definition 1 and theorem 1.
Below, we compute the rank of the observability matrix (1.10) and determine
the necessary conditions under which the system (S) can be locally weakly
observable. Here, we have:

rank(O) = rank(∇L0y) + rank(∇L1
f0y). (1.11)

The rank of ∇L0y has been studied in [29]. They proved that rank(∇L0y) =
4(nr − 1) + ns. It is straightforward to determine the rank of ∇L1

f0
y. Since

the number of linearly independent equations in ∇L1
f0
y appears to be ns (i.e

rank(∇L1
f0
y)=ns) if we have a ̸= 0 (i.e. auto-regressive model of the biases).

So, according to (1.11) we get:

rank(O) = 4(nr − 1) + 2ns (1.12)

In order to get a full rank of O, one must discuss the least required number of
ns common satellites between users. It is obvious that rank(O) can not exceed
the nI unknowns states of (S) which is equal to 4nr + ns (i.e. rank(O) ≤
4nr + ns), so to get a full rank of O one must determine ns such that

rank(O) ≥ 4nr + ns. (1.13)

By replacing (1.12) in (1.13) we get: ns ≥ 4. The observability rank condi-
tion (definition 1) is obtained when this condition is satisfied. According to
theorem 1, it can be concluded that the system is locally weakly observable
regardless the number of users (nr) if the biases have an auto-regressive be-
havior and at least 4 common satellites between the vehicles. Please note also
that, as we have only used the Lie derivative with respect to f0, the system
is observable even if the the vehicles are motionless.
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1.3 Methodology for Cooperative State Estimation

This section will introduce how to extend non-cooperative methods of localiza-
tion to cooperative ones. Essentially, there are two methods: the probabilistic
(or Bayesian) method and the bounded error (or set-membership) method.

1.3.1 Computing Reliable Confidence Domains with a Set
Membership Method

1.3.1.1 Set Inversion with Constraints Propagation

To perform a state estimation in a bounded error framework with intervals,
one needs solving a set inversion problem. The objective is to determine the
unknown state X ⊂ Rn such as f(X) ⊂ Y , where Y is the known set of
measurements. The objective is to compute the reciprocal image X = f−1(Y).
A guaranteed approximation of the solution set X can be done using 2 sub-
pavings which bracket the solution set as follows: X ⊂ X ⊂ X (Fig. 1.3).

A box [x] of Rn is feasible if it is inside X and unfeasible if it is outside X,
otherwise [x] is indeterminate. By using an inclusion function [f ] of function
f , one can identify the feasibility of the boxes using the following tests:

• If [f ]([x])⊂ Y then [x] is feasible

• If [f ]([x])∩Y = ∅ then [x] is unfeasible

• Else [x] is indeterminate.

SIVIA solves the set inversion problem by testing recursively the feasibility of
candidate boxes, starting from an arbitrarily large initial box [x0] [20]. If a
box is feasible, it is stored in the inner solution set X. If a box is unfeasible,
it is discarded since the resulting box ([f ]([x])) is outside the measurement
domain Y. Finally, an indeterminate box is bisected into two sub-boxes and
stored in a list L waiting to be treated.
In high dimension, SIVIA is not suitable for a real-time implementation due
to the computation time of the bisections. One solution is to use “SIVIAP”,
a SIVIA with Constraints Propagation (CP) on intervals. CP is very efficient
in terms of computation and reduces the number of needed bisections by
contracting boxes in order to speed up the processing.
SIVIAP involves the formalization of a Constraint Satisfaction Problem. A
CSP is denoted by H (Eq.1.14) and provides the box [x] that satisfies all the
constraints F .

CSP : {H : (F (x) = 0 | x ∈ [x])} (1.14)
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Contracting H means replacing [x] by a smaller domain [x′] such that the solu-
tion set remains unchanged. The contractors used in this work are Forward-
Backward Propagation and Waltz algorithm [33] intersection. More details
can be found in [34].

1.3.2 Cooperative Localization Problem Statement

Vehicles share their estimated GNSS errors, their DR measurements and their
positions. The objective is to get estimates with reliable confidence domains
that contain, with high probability, the true positions of the vehicles with
little pessimism.
Let us describe the variables, the domains and the constraints of the considered
CSP.
Variables
In each agent Ri, there is an ego state to be estimated and a tracked position
of every known other vehicle Ro in the group, where o ∈ {1, . . . , nr − 1} and
o ̸= 0 .
Ego state: let ν = {xi, yi, zi, b1, . . . , bns , di, dri} be the variables of the ego
state ixego of Ri of dimension n = 5+ns. Only these variables are considered
in the CSP. Let denote the absolute position by iq = {xi, yi, zi}, the biases of
all ns satellites in view by ib = {b1, . . . , bns} and the inner variables of Ri by
iξ = {di, dri} which contains respectively the clock offset di and its drift dri.
Tracked position: let iqo = {iq1, . . . ,

iqnr−1} be the positions of the other
vehicles estimated by agent Ri.
The ego input of Ri is denoted by iuego = {vi, ψi}, where vi and ψi are
respectively the linear speed and the heading angle. iuo = {iu1, . . . ,

iunr−1}
represents the input of Ro composed of iuo = { vo, ψo }. This information
is received from the others.
Domains
The domains of the variables are sets which enclose the true value of the vari-
ables and are represented by boxes, i.e. vectors of intervals of Rn as follows
[ixego] =

[
[iq]T [ib]T [iξ]T

]T . Each interval contains the unknown vari-
able [ν] = [νtrue − δν , νtrue + δν ], where νtrue represents the true value of ν
and δν is the bound of the error.
Constraints
The constraints that link the variables at each time k are the evolution and
observation models:

(i) ixego,k = fk(
ixego,k−1,

iuego)

(ii) iyk = g(ixego,k)
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The constraint (i) corresponds to the dynamic equation of the model, while
the constraint (ii) defines the CSP which is used in SIVIAP: iyk are the
pseudoranges set to be inverted and ixego,k is a prior feasible box coming
from a prediction stage.
Solver
SIVIAP approximates the state vector ixego,k such that g(ixego,k) ⊆ [iyk]
using a forward-backward contractor. The set to be characterized by SIVIAP
is:

CSP = {ixego,k ⊆ [ixego,k]\g(ixego,k) ⊆ [iyk]}
= g−1([iyk]) ∩ [ixego,k] (1.15)

1.3.3 Distributed algorithm

The same algorithm (1) runs in every vehicle Ri. Agent Ri predicts its ego
state ixego using the evolution model and its DR inputs ( vi, ψi ) measured
at high frequency (line 1). Moreover, it tracks the other vehicles (line 2) using
their last received DR inputs.
Lines (4 · · · 14) of the algorithm consist in updating the predicted state ixego
with respect to the GNSS measurements which are available every 0.2s. In
order to reduce the outliers at each time k when the GNSS measurements
are available, a validation process on the measurements of every satellite is
performed. For every pseudorange measurement, we check if the SNR (Signal
to Noise Ratio) of the satellite is high enough (e.g. 35 dB/Hz) and we perform
an innovation test based on a punctual estimate with the center of the boxes.
Afterward, we apply the SIVIAP algorithm presented in [35] with the following
modifications.
The considered solution is the hull box of X which is the union of the inner X
and the indeterminate ∆X subpavings as it is shown in Fig 1.3. In order to
stop the bisections, we limit the computational time at 0.1 s for each epoch.
In this case, the tolerable time communication delay is about 100 milliseconds.

In our problem, the vehicles have well synchronized clocks using PPS pulses
of the GNSS receivers. The communication delays (line 15) are neglected.
The sent (dataS) and received (dataR) data at time instant k by each vehicle
have a unique identifier id in the group. The amount of the transmitted
information on the communication network is low, since vehicles only exchange
the lower and upper bounds of the boxes.
In line 16 of the algorithm, each vehicle i updates the tracked position of the
Ro by the received estimated position [iqo] := [oqego]. Finally, Ri merges its
estimated biases with the received ones from the other vehicles Ro as follows
[ib] = [ib] ∩ [ob].
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Algorithme 1 An iteration stage of the method in Ri

Cooperation (in:[ixego], [iuego],
[
ρ11, . . . , ρ

ns
1

]
, [oq], [ouego],

[ob], g ; out:[ixego], [iqo])
1: [iuego] = [vi, ψi]

T
=Get(DR measurements)

2: Prediction (in: [iuego] ; in out:[ixego] )
3: Track (in: [iqo], [

iuo] ; out: [iqo])
4: if New GNSS data is available then
5: ns= number of visible satellites
6:

[
ρ11, . . . , ρ

ns
1

]
=Get(GNSS measurements)

7: Good_Pr=∅
8: for j = 1, . . . , ns do
9: if (ρj is good) then

10: Add(ρj) to the Good_Pr list ([iygood])
11: end if
12: end for
13: SiviaP (in: CSp , [iygood], ε, g; in out: [ixego])
14: end if
15: Communication(in: dataS; out: dataR)
16: Track_update(in: [oq]; out: [iqo])
17: Fusion(in out: [ib],[ob])

1.4 Experimental results

The results of two scenarios, Standalone (S) and Cooperative (C), are reported
to quantify the performance gain due to the cooperation using the proposed
SIVIAP distributed method. We compare also the SIVIAP estimates with the
ones of a rather conventional Bayesian procedure implementing an EKF and
involving the same processes: prediction/tracking, update, communication
and fusion. Please refer to [28] for more details on the proposed cooperative
EKF. The GNSS measurement errors are time correlated and, when doing
sequential distributed estimation, the data fusion process that estimates the
biases of these measurements incorporate loops. This induces a data incest
problem. In the Bayesian framework, a usual method to address this issue
is to do the fusion of the biases by using the Covariance Intersection (CI)
operator, instead of the Simple Convex Combination (SCC) which is valid
only when the errors are uncorrelated. CI is known to provide consistent
estimates even when facing an unknown degree of inter-estimate correlation
[36, 37]. In the sequel, we denote by C-SIVIAP and C-EKF-CI the cooperative
set-membership and Bayesian methods based on the CI fusion, respectively.
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Variables Std. deviation

ρ(m)
R1

√
90000.10−SNR/10

R2 9

v(m.s−1)
R1 1e− 3

R2 2e− 3

ψ(rad.s−1)
R1 2.5e− 3

R2 5e− 3

Table 1.1: Noises parameters used for the estimation methods.

1.4.1 Experimental setup

The different approaches have been tested with two experimental vehicles (Fig.
1.2) and with the same data-set which was used in a post-processed way. A
low-cost U-blox 4T GPS receiver providing raw pseudoranges measurements at
5Hz was used in each vehicle. The extraction of broadcast satellite navigation
data has been done as follows. Conversion of U-blox navigation data into
RINEX files and generation of satellite raw pseudoranges with ionosphere,
troposphere, satellite clock offset and time relativity classical corrections. As
the localization problem is studied in a local ENU (East-North-Up) frame,
the satellite positions, at their emission time, have be transformed into the
ENU frame.
In every vehicle, a PolarX Septentrio receiver was used in RTK mode to
provide ground truth data with heading ψ information. Indeed, when the
receiver is in motion, a GNSS receiver can calculate an accurate track angle
which is the measured angle from true North in clock wise direction. When
ground vehicles drive with low speed, one can assume that track is equal to
heading since slippage can be neglected. A CAN-bus gateway was used to get
the linear speed v at 100Hz rate. The inputs used by the cooperative system
are u =

[
v ψ

]T .
10 satellites were in view during the test and 5 of them were at least in
common which satisfies the necessary condition of the observability study
discussed in section 1.2.2. When 4 common satellites between vehicles are
not available, one should switch to standalone method. The GPS satellite
visibility was sometimes very constrained due to buildings and trees near the
test area. Vehicle R2 has more satellite in view than vehicle R1 during the
experiment due to its favorable GNSS environments. The reported test was
about 4 minutes long. Fig. 1.4 shows a top view of the trajectories of both
vehicles using the (C) set-membership method.
The methods are compared with the same standard deviations parameters
presented in Table 1.1.
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HPE R1 HPE R2 Estimated relative distance

Std. dev. (m)
S 2.28 1.58 2.87

C 1.71 1.53 2.58

Max (m)
S 5.77 5.55 8.27

C 6.21 4.30 8.87

Median (m)
S 1.43 1.83 4.93

C 0.89 2.31 3.23

CDS R1 CDS R2

95th percentile (m2)
S 1652 541.4

C 475.3 256

Table 1.2: HPE, relative distance and CDS statistics.

1.4.2 Set-membership method (SIVIAP) performance analy-
sis

The distributed algorithm has been implemented in C++ using the interval
library IBEX [38] and with homemade functions. Fig. 1.4 shows the estimated
position boxes of both vehicles. The displayed solution is the hull box [X] of
the union of the inner and indeterminate subpavings: X ∪∆X.
Fig. 1.5 and 1.6 show the bounds of the position errors of the vehicles respec-
tively for the x and y dimensions using the (C) and (S) methods. At a first
glance, one can check the consistency of both observers due to the fact that
bounds contain always the zero value. It means that the RTK reference posi-
tion is always included in the estimated boxes which indicates a good tuning
of the observers.
Table 1.2 gives some performance metrics for both methods in term of absolute
Horizontal Positioning Error (HPE) and relative distance. The Confidence
Domain Size (CDS) of the resulting box is also studied, it is computed with
the box volume. The CDS is evaluated via the Cumulative Distribution Func-
tion (CDF) of vehicles 2D boxes volumes throughout the trajectory. A net
improvement is obtained for vehicle R1 in terms of accuracy and confidence.
For instance, the median of HPE is reduced from 1.43m to 0.89m and the
CDS is 66.4% condensed due to the cooperation since the 95th percentile of
the CDS is less than 475.3m2 compared to 1652m2 when using the S method.
Concerning vehicle R2, the improvement of HPE is not as significant as in R1

since contraction of boxes can move away the center from the reference. The
cumulative CDS is 52.7% reduced since 95th percentile of the CDS is less than
256m2 compared to 541.4m2 when using the S method, which is a substantial
improvement.
Regarding the estimation of the relative distance, the method improves the
accuracy again trough the fusion of the biases estimates. Especially, if we look
at the median and standard deviation errors, they are reduced by 42% and
20% respectively which is a significant improvement.
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The bias on every pseudorange has been initialized with the interval [−30, 30]
(in meters) giving no prior knowledge. For each subplot of Fig. 1.7, the x axis
expresses the number of samples, the y axis displays every estimate (the center
of the box) of the bias [bj ] with its bounds in meters and j = 1, . . . , ns. Note
that all subplots are truncated in order to observe the convergence illustrated
by the horizontal final asymptotes. This convergence confirms the observabil-
ity analysis. The obtained final values of the biases are very common for low
cost GNSS receivers [39].
Other results illustrating more in details the behavior of the proposed C-
SIVIAP method can be found in [40].

1.5 Comparison with a distributed Extended Kalman fil-
tering implementing a covariance intersection

1.5.1 Backgrounds for Comparison of both methods

The cooperative estimation of the biases has been implemented with the CI
data fusion operator [41]. Eq. (1.16) gives how the covariance matrix and the
state estimate are computed.{

P−1 = ωP−1
1 + (1− ω)P−1

2

x̂ = P · (ωP−1
1 · x1 + (1− ω)P−1

2 · x2)
(1.16)

The weighting factor ω ∈ [0, 1] has been chosen here to minimize the deter-
minant of the covariance matrix in order to get the smallest uncertainty. The
CI fusion provides a conservative and robust result when correlation between
two estimates x̂1 and x̂2 is unknown, as often the case in distributed systems.
However, the data fusion algorithm is not optimal [42].
When using a cooperative Bayesian method based on Kalman filtering, ve-
hicles have to share also their estimated error covariance matrix. The used
algorithm of the CI fusion of biases estimates is presented in [43]. The weight
is the minimum of the covariance matrix determinant of the merged bias er-
rors.
The C-EKF-CI has been implemented with exactly the same data as the C-
SIVIAP method.

1.5.2 Comparison criteria

The choice of good performance metrics is a key issue for assessing a system
and evaluating its application. For vehicle localization systems, accuracy is
an important metric which usually refers to statistical figures of merit of the
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position error. These errors are built with respect to ground truth. For in-
stance, the 95th percentile of the horizontal positioning error distribution can
be chosen for accessing the horizontal positioning accuracy. We also propose
to evaluate the system reliability by examining the consistencies of the fil-
ters. This can be achieved by checking whether the estimated uncertainties
correspond to the physical reality of the errors. The confidence bounds of
estimated do mains also act as decision variables and so are linked to the
pessimism of a localization system. If the confidence bounds are small while
keeping the estimates consistent, the localization system is considered to be
not too pessimistic. So, a good localization system is a system that provides
adequate confidence information and good HPE accuracy. In the following,
we use two criteria.

1.5.2.1 Horizontal Protection Errors

The HPE of both methods are defined below:

HPE =
√
e2x + e2y (1.17)

where ex = x̂ − xref , ey = ŷ − yref . (x̂, ŷ) and (xref , yref ) represent respec-
tively the 2D estimated position and the RTK reference.
For the C-SIVIAP method, the center of the estimated hull box (xmid, ymid)
is used as a punctual estimate.

1.5.2.2 Confidence Domain Size

The CDS needs to be assessed to check if the uncertainty is well handled. To
gauge this issue, the 2D Cartesian evaluation is transformed in 1D problem by
using a statistical distance computation denoted k σHPE , where k is the chosen
consistency risk according to a χ2 distribution (for a 10−2 risk, k = 3.035 -
this is a common choice that is done here). The σHPE of a Bayesian method
is given by Eq. 1.18 [44].

σHPE =

√
1

uTe P
−1
HPEue

, with ue = (
ex
ey

)/
√
e2x + e2y (1.18)

ue is the unit vector supporting the HPE and PHPE is the estimated matrix
of the error covariance when using C-EKF-CI (see Fig. 1.8 for an illustration).
For the set-membership C-SIVIAP method, the same consistency 1% risk k
has been considered when setting the bounds on the pseudoranges:

[ρji ] = [ρji − kσρ, ρ
j
i + kσρ] (1.19)

where j represents the satellite index and σρ represents the standard deviation
of the pseudorange measurement presented in table 1.1.
In way similar to the Bayesian method, the CDS of C-SIVIAP is defined by
a kσHPE segment in the direction of the HPE vector, as shown by figure 1.9.
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1.5.3 Comparison Results

1.5.3.1 Accuracy analysis

Figure 1.10 depicts the cumulative distribution of HPEs of the both aforemen-
tioned methods. 95% of the HPE errors for vehicle R1 are less than 10.46m
and 5.32m, respectively for C-EKF-CI and C-SIVIAP. For vehicle R2 these
figures are less than 7.64m and 4.41m respectively. The accuracy gain of C-
SIVIAP compared to C-EKF-CI is 49.13% for R1 and 42.27% for R2. The
set-membership approach is clearly more accurate than the Bayesian one.

1.5.3.2 Consistency analysis

Let us consider now the filters consistency which is checked if the CDS bounds
actually the HPE i.e. HPE < kσHPE . Consistency tests using HPEs are
fundamental to provide suitable horizontal protection levels (HPL) for coop-
erative vehicles [45].
Figure 1.11 presents 2D histograms in order to evaluate the consistency of
the two methods for vehicles R1 and R2. The horizontal and vertical axis
represent respectively the HPE and the CDS (i.e. k σHPE) computed for each
navigation solution. Each pixel tabulates the total number of occurrences of
a specific (HPE, CDS) pair. Note that the color scale is logarithmic. These
histograms can be considered as simplified Stanford diagrams since we are
only interested in regions where we have CDS>HPE and HPE>CDS. Points
where the CDS is under the HPE error indicate a failure of integrity. In this
way, the gray area corresponds to overconfident outcomes of the filters.
It appears from these results that the two methods are 100% consistent since
there is no point in the gray area. Therefore, C-EKF-CI and C-SIVIAP meth-
ods are both reliable in the sense that the ground truth is always included in
the estimated confidence domain.
As confidence is in practice compared to a threshold to indicate “use” or “don’t
use” to the client application, it is important, in terms of availability of the
positioning information, to provide as small as possible confidence domains.
Let us look especially at the k σHPE of both methods for each vehicle in figure
1.11.
It can be observed that the confidence domains produced by the C-SIVIAP
method are significantly tighter than the C-EKF-CI ones, in particular for
vehicle R2.
This indicates that the bounded-error method significantly reduces uncertain-
ties compared to a Bayesian method based on covariance intersection fusion.
To resume the comparison analysis of the methods, the consistencies of set-
membership and Bayesian filters are achieved. Both methods provide reliable
confidence domains that contain the true positions of vehicles. Reliability is
quite important for navigation missions in approach in order to avoid collision
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problem. However, the cooperative set-membership method performs better
than the Bayesian one in terms of accuracy and uncertainty as it gives a
significant improvement of positioning accuracy and a good decrease of the
confidence domains.
If we look at performance comparison between the two vehicles when using
the set-membership method, it can be observed that the best performance is
obtained for vehicle R2 which has more accurate positions (i.e, lower HPE)
and less uncertainties (i.e, smaller CDS). This is due to the fact that R1 has
less satellites in view and its DR sensors are of less good quality compared to
vehicle R2.

1.6 Conclusion

This work has presented two cooperative localization methods for intelligent
vehicles sharing GNSS common errors. It has been found that at least 4 satel-
lites and an auto-regressive model of the biases are needed to keep the states
observable which means that the problem is solvable even if there is no fixed
base station well located. The proposed cooperative bounded error approach
based on set inversion method with constraint propagation provides a signifi-
cant enhancement in terms of accuracy and confidence domains compared to
usual standalone methods.
The reuse of identical information (which are here the estimated biases) in the
fusion process is also naturally managed by a set-membership approach. Such
kind of method therefore deals correctly with the data incest issue. More-
over, it handles rigorously the non-linearities of the equations. We have also
reported a performance comparison of the bounded-error method with a co-
operative sequential Bayesian approach based on Kalman filtering and on co-
variance intersection fusion of the biases estimates. The experimental results
indicate that both methods give reliable confidence domains of vehicles posi-
tions. However, the set-membership approach has the advantage to provide
more accurate positions with smaller confidence domains. The key informa-
tion deduced from this comparison is that set-membership methods are very
suitable for applications requiring high integrity/accuracy in cooperative nav-
igation contexts.
In future work, the robustness of the tuning of the proposed method should
be more deeply considered by conducting different tests. This is important to
address complex situations as urban canyons where simultaneous multipath
issues are frequent. Moreover, the proposed algorithm has been designed to
have a period higher that the communication delay between vehicles. In a
V2X network, the transmission of real-time data with a guaranteed latency is
not possible (due to collision issues for instance). In this case, a solution is to
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keep a time-stamped data buffer in each vehicle and to process the data in a
sliding time window after the received data have been placed at the correct
place in the buffer. The position is updated in the past and propagated up to
the current time.
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Figure 1.1: Illustration of the effects of biased measurements. Confidence domains
are zones in which the vehicle is highly located.
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Figure 1.2: Experimental vehicles and shared data



30 Bibliography

[ ]

Figure 1.3: Bracketing of the solution set X between two subpavings X and X =
X ∪∆X . [X] is the hull box of X.
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Figure 1.4 : Trajectories of both vehicles when using C-SIVIAP. Reference and
position boxes are displayed. The mean speed of vehicles was 30Kmph. Every vehicle
did several loops of its trajectory.
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Figure 1.5 : Bounds of position errors of R1 centered on the reference.
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Figure 1.6 : Bounds of position errors of R2 centered on the reference.
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Figure 1.7 : Estimates and bounds of pseudoranges biases (units are samples and
meters).
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Figure 1.9 : HPE and k σHPE illustration for C-SIVIAP.
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Figure 1.10 : Plots of the cumulative distribution function (CDF) of the HPE
produced by the two methods in the two vehicles (C EKF : cooperative EKF based
on CI fusion, C SIVIA : cooperative set-membership method).
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(c) C-SIVIAP for R2.
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Figure 1.11 : simplified Stanford Diagram : Filters consistency when using cooper-
ative set-membership and Bayesian methods for R1 and R2. (a) C-SIVIAP for R1,
(b) C-EKF based on CI fusion forR1, (c) C-SIVIAP for R2, (d) C-EKF based on
CI fusion for R2.
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