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We study the three-dimensional hydrodynamic interaction of a pair of identical, initially
spherical capsules freely suspended in a simple shear flow under Stokes flow conditions.
The capsules are filled with a Newtonian liquid (same density and viscosity as the sus-
pending fluid). Their membranes satisfy the neo-Hookean constitutive law. We consider
the rarely studied case where the capsule centres are initially located in (or near) the
plane defined by the flow direction and the vorticity vector, i.e. in two different shear
planes. The motion and deformation of the capsules are modelled by means of a boundary
integral technique to compute the flows, coupled to a finite element method to calculate
the force exerted by the membranes on the fluids. We follow the motion and deformation
of the capsules as they are convected towards each other after a sudden start of the flow.
Our main finding is that, depending on their initial position and deformability, the two
capsules may oscillate slowly about the flow gradient axis, get nearer to each other at
each oscillation to finally interact strongly and separate. This minuet motion had not
been identified previously. We identify the regions of space where either simple crossing
or minuet occur. This phenomenon has a marked influence on the irreversible trajectory
drift of two capsules after crossing: the minuet process leads to a significant trajectory
displacement along the flow gradient when none was expected, based on the previous
studies where the two capsules had a significant relative velocity.

Key words:

1. Introduction

The hydrodynamics of pairwise interaction of deformable particles is a crucial topic
for semi-dilute suspension rheology (Batchelor & Green 1972a; Guazzelli & Morris
2012). When the particles are deformable, their shear induced deformation leads to non-
Newtonian and to self-diffusion effects. This has been demonstrated for liquid droplets
(Loewenberg & Hinch 1997; Guido & Simeone 1998). The case of capsules (liquid drop
enclosed by a thin elastic membrane) is particularly complex because the motion and
deformation of those particles result from non-linear fluid-structure interactions that are
difficult to model. For example, the capsules may be highly deformed as they cross each
other, which leads to the formation of a thin liquid film between the two particles and
to potential damage of the membrane due to high shearing forces.

† Email address for correspondence: anne-virginie.salsac@utc.fr
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This phenomenon is usually studied in a simple shear flow v∞
1
= γ̇ x2, v

∞
2
= v∞

3
= 0

in a laboratory Cartesian reference frame, where γ̇ is the shear rate. The two capsules

C1 and C2 are initially positioned with distances ∆X
(0)
1

,∆X
(0)
2

,∆X
(0)
3

between their
centres. The first three-dimensional model of two initially spherical identical capsules
(radius a) interacting in simple shear flow is due to Lac et al. (2007), who considered the

case where the two capsules had their centres in the same x1x2 shear plane (∆X
(0)
3
= 0).

The capsule membrane is treated as a very thin sheet of a hyperelastic material devoid
of bending resistance and the flow Reynolds number is assumed to be negligible. Lac et

al. showed that, in a reference frame centered on C1, capsule C2 is first displaced along
the velocity gradient so that it can overpass (‘jump over’) C1 and it is then shifted back

towards the flow axis as it moves away. However, the final separation ∆X
(f)
2

is larger

than the initial one ∆X
(0)
2

. The crossing thus leads to an irreversible trajectory shift
along the shear gradient (x2-direction). This effect, which decreases with an increase

of the capsule deformability and/or the initial distance ∆X
(0)
2

, ultimately leads to self-
diffusion effects in a suspension. We propose to call this crossing process the leapfrog

motion. The same situation was later considered where the two spherical capsules were
replaced by two red blood cells (Omori et al. 2013) or two vesicles (Gires et al. 2014). In
both instances, it is found that the particles do a leapfrog motion with a trajectory shift
that evolves qualitatively as found previously by Lac et al. Experimental measurements
of the trajectory of liquid filled giant lipid vesicles compare well with the predictions
of the flow model (Kantsler et al. 2008; Gires et al. 2014). In all the aforementioned
studies, the flow field around the capsules was computed by means of the boundary
integral representation of the Stokes equations. As a consequence, the pair of capsules is
effectively interacting in an infinite flow domain.

Finite differences and front tracking techniques can also be used to study the inter-
action problem: this allows to consider non-Newtonian or finite inertia effects in the
suspending fluid. The computation is usually performed in a flow domain, bounded by
two walls parallel to the x1x3-plane where the velocity is imposed (to create the simple
shear flow). On the other boundaries of the box, periodic flow conditions are imposed.
Doddi & Bagchi (2008) used this technique to model the pair interaction of two initially
spherical capsules, when the inertia of the flow was not negligible. They found that
when the flow Reynolds number increased, the capsules did not cross, but reversed their
motion. This phenomenon was confirmed for a pair of liquid droplets (Olapade et al.

2009). However, the spiraling motion reported by Doddi and Bagchi, is linked to the
size of their computational domain and is a confinement effect. Indeed, for the results
to be independent of the computational procedure and to be transposable to unbounded
flow situations, the domain has to be large enough, typically 40a× 10a× 5a, for in-shear-
plane crossing (Olapade et al. 2009). Pranay et al. (2010) considered the case where
the suspending fluid is a dilute polymeric solution. They found that the presence of
polymer leads to a decrease of the trajectory shift only when the capsule deformability
is low. A recent study (Singh & Sarkar 2015) considered the pair interaction of two
capsules with different deformability and found that the trajectory shift is influenced by
the stiffness ratio. All the studies based on finite difference and front tracking techniques
only considered pairs of capsules with their centroids in the same shear plane, where they
remain because of the problem symmetry.

However, in a suspension, two nearby capsules will not necessarily have their centers
of mass in the same shear plane. For example, special care has to be taken in vesicle
experiments to ensure that this is approximately the case. Accordingly, Lac & Barthès-
Biesel (2008) also modeled the three-dimensional motion of two capsules positioned in
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two different shear planes (∆X
(0)
3
≠ 0). In this case, a sideways leapfrog motion occurs

with a maximum trajectory displacement along both the x2- and x3- directions, which

decreases as ∆X
(0)
3

and/or capsule deformability increase. Lac and Barthès-Biesel also
showed that the final trajectory shift along the x3-axis is indeed smaller than the one
along the velocity gradient x2-axis (about one third), but present nevertheless. This was
also globally confirmed by Gires et al. (2014) for vesicles.

However, in all aforementioned studies, the two capsules always had a significant initial

relative velocity, obtained by means of ∆X
(0)
2
≥ 0.5a. This choice was made to avoid very

long computations. The only exceptions are due to Lac et al. (2007) and Omori et al.

(2013), who showed that for two capsules located on the same streamline (∆X
(0)
1
≠

0,∆X
(0)
2
= ∆X

(0)
3
= 0), the perturbation created by the deformation and membrane

rotation of the two capsules, created a small but finite velocity field that displaced the
centroids along the x2-axis and led to a relative velocity of the capsules and to a leapfrog
motion. The result was interesting as it showed that such initial conditions led to the
largest self-diffusion effect. The conclusion of this review is that there is presently no
information on the self-diffusion of two capsules when their centres are located in the
x1x3-plane.

The objective of this paper is to fill this gap and to investigate the three-dimensional
motion of two capsules when their centroids are in or near the same x1x3-plane. We will
take advantage of the computational technique that we have developed, based on the
coupling of a boundary integral to compute the flow and finite elements to compute the
capsule wall mechanics (Walter et al. 2010). This coupling has proved to be very stable
in a number of situations where long transient motion of a single capsule needed to be
monitored (Walter et al. 2011; Hu et al. 2012; Dupont et al. 2013, 2016). We will see that
a new interaction mode is revealed: given the choice, the capsules oscillate around the
shear gradient axis, rather than around the vorticity axis. We call this interaction mode
the minuet motion, as it is similar to the one reported for Volvox algae (Drescher et al.
2009), albeit for different hydrodynamic interactions.

The paper is organized as follows: the problem is set out in section 2 together with a
short description of the numerical method. The different types of capsule interaction are
presented in section 3, where we also discuss the main factors that determine the motion
type. In section 4, we analyze which factors determine the motion type and illustrate the
area of space where oscillatory motion is expected to occur. In section 5, we then study
the consequences on the trajectory shift and self-diffusion phenomena in the suspension.
In the final section 6, we summarize the findings and provide a conclusion.

2. Problem statement and numerical method

2.1. Problem description

Two identical spherical capsules C1 and C2 (radius a), filled with a Newtonian liquid
(viscosity µ, density ρ) and enclosed by a very thin hyper-elastic membrane (surface shear
modulus Gs and area dilation modulus Ks), are freely suspended in another Newtonian
liquid (viscosity µ, density ρ) and subjected to a simple shear flow with shear rate γ̇.
Inertia effect is neglected. The capsules centroids are denoted G1 and G2. We use a
reference frame centered on G1, that moves with it (Figure 1). Our objective is to study
the interaction process between the two capsules as they are convected by the flow and,
specifically, to compute the evolution of the velocity V (t) and position X(t) of G2 with
time t.
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x1
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x3
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(0), X 

(0), X 
(0)}1 2 3

Figure 1: Two capsules flowing in simple shear flow. The reference frame is linked to
capsule C1 and the coordinate system is centered on it. The centre of C2 is initially
positioned at X(0).

The undisturbed flow v∞ of the external liquid is given by:

v∞1 (x) = γ̇ x2 ; v∞2 (x) = v
∞
3 (x) = 0. (2.1)

Note that since the problem is inertialess, the flow field has the same expression (2.1)
in a laboratory reference frame. The motion of the internal and external fluids is governed
by the Stokes equations, with associated boundary conditions given by:
● vanishing flow perturbation far from the capsules:

vext(x)→ v∞(x) as ∥x − x(Gα)∥ →∞ α = 1,2; (2.2)

● at a material point x located on the membrane of either capsule:

vext(x) = vint(x) = ẋ , (2.3)

q +∇s ⋅ T = 0, (2.4)

where the superscript ext or int refers respectively to the suspending fluid or to the
capsule internal liquid. The jump of viscous traction across the membranes is q, the in-
plane elastic tension tensor in the membrane is denoted T and ∇s is the surface gradient
operator. Equation (2.4) is the membrane equilibrium equation, which expresses the
dynamic coupling between the solid membranes and the fluids.
As this fluid-structure interaction problem is now classical, we will only present the

main hypotheses used here and refer the reader to the comprehensive review of Barthès-
Biesel (2016). The fluid velocity at any point x is written as a boundary integral on the
surfaces S1 and S2 of the two capsules (Lac et al. 2007):

v(x) = v∞(x) − 1

8πµ
∫
S1∪S2

J(x,y) ⋅ q(y)dS(y), (2.5)

where J is the free space Green’s function given by:

J(x,y) = I

∥x − y∥ +
(x − y)⊗ (x − y)
∥x − y∥3 , (2.6)
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where I is the identity tensor. The pressure p − p0 at a point x is given by:

p(x) − p0 = − 1

4π ∫S1∪S2

q(y) ⋅ (x − y)
∥x − y∥3 dS(y), (2.7)

where p0 denotes the far field pressure.
The capsule membrane is assumed to be an infinitely thin sheet of a three-dimensional

isotropic volume incompressible material that satisfies a neo-Hookean (NH) constitutive
law. Bending resistance is neglected. The membrane constitutive law relates the principal
elastic tensions (forces per unit arclength measured in the membrane plane) T1 and T2

to the two principal extension ratios λ1 and λ2:

T1 =
Gs

λ1λ2

[λ2

1
−

1

(λ1λ2)2 ] , (2.8)

with a similar expression for T2, where the subscripts 1 and 2 are permuted. For simplicity,
we have denoted those principal directions 1 and 2, but they should not be confused with
the Cartesian directions in space. The surface shear elastic modulus Gs and area dilation
modulus Ks are related by Ks = 3Gs (Barthès-Biesel 2016). The corresponding total
deformation energy of the membrane of one capsule is given by:

W =
Gs

2
∫
S
(λ2

1 + λ
2

2 − 2 +
1

λ2

1
λ2

2
− 1
)dS, (2.9)

where S stands for either S1 or S2.
The main parameters are the capillary number:

Ca =
µγ̇a

Gs

, (2.10)

which measures the relative stiffness of the capsule and the initial position of G2 at time
t = 0, when the flow is suddenly started:

X(0) =X(0) = {X(0)
1

,X
(0)
2

,X
(0)
3
}. (2.11)

We shall discuss the typical case where X
(0)
1

and X
(0)
3

are negative while X
(0)
2

is positive:

the flow of G2 occurs from left to right in the trajectory figures. The case X
(0)
3
> 0 is the

symmetric of the typical case with respect to the shear plane. Positive values of X
(0)
1

and

negative ones for X
(0)
2

correspond to the mirror image of the typical case, with respect
to the x2x3-plane. When the crossing process is completed, the final steady position of

G2 is {X(f)
1

,X
(f)
2

,X
(f)
3
}. We define the final trajectory shifts of the capsule:

δ2 = ∣X
(f)
2
∣ − ∣X

(0)
2
∣, δ3 = ∣X

(f)
3
∣ − ∣X

(0)
3
∣, (2.12)

which are computed for ∣X
(f)
1
∣ = 10a.

2.2. Numerical method

The fluid-structure interaction problem is solved by means of the numerical scheme
that couples a boundary integral method (BI) to solve the fluid flow and the finite element
method (FE) to solve the membrane mechanics (Walter et al. 2010; Hu et al. 2012). This
method is well adapted to Stokes flows and has the advantage to request the discretization
of the capsule surfaces S1 and S2 only. It automatically accounts for an unbounded fluid
domain. The model inputs are the capillary number Ca and the initial position X

(0) of
capsule C2. Following Lac et al. (2007), we use the fact that the two capsules are identical
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to center the flow field on the midpoint O of G1G2, so that Equation (2.5) can be solved
on only one capsule and becomes:

v(x) = v∞(x) −
1

8πµ
∫
S2

[J(x,y) − J(x,−y)] ⋅ q(y)dS(y), (2.13)

The capsule surface S2 is discretized using P2 triangle elements, in which 6 nodes are
allocated at the vertices and the middle of each sides. The mesh is generated from
the initial spherical shape by projecting a regular icosahedron to the sphere and then
subdividing each element subsequently to the desired precision. A mesh of 1280 elements
and 2562 nodes has been used in all the simulations, corresponding to a characteristic
mesh size ∆hc = O(0.1a). Such a spatial discretization has been shown to lead to a
relative error of order 10−3 on the Taylor deformation of a single capsule in shear flow
(Walter et al. 2010). Furthermore, it can withstand some membrane compression without
creating any numerical instability (Hu et al. 2012). The explicit time iteration will be
stable only if the time step is such that γ̇∆t < O(Ca∆hc/a) (Walter et al. 2010). In the
case of an NH membrane and Ca = 0.3, γ̇∆t = 5 × 10−4 allows us to compute the capsule
trajectory over long times without stability issues. We stop the computation when the
distance G1G2 is larger than 10a.

At time t = 0, C2 (positioned at {X(0)
1
/2,X(0)

2
/2,X(0)

3
/2}) and C1 (positioned at

{−X(0)
1
/2,−X(0)

2
/2,−X(0)

3
/2}) are subjected to the sudden start of the flow. The model

follows the motion of the capsule membrane over time. At any time, the model can thus
output the position of the surface nodes, from which it is possible to infer, for each
capsule, the deformation and elastic tensions in the membrane as well as the position
and velocity of the centroid. The knowledge of this velocity allows us to transcript the
results in the reference frame linked to C1.
The accuracy of the numerical model is checked by comparing capsules trajectories

with those obtained by Lac et al. (2007) and Lac & Barthès-Biesel (2008), and also by
assessing the influence of the time step and of the spatial discretization of the capsule
membranes (Appendix A): the conclusion is that the centroid trajectories are accurate
within 0.05a.

3. Types of capsule interaction: simple crossing (leapfrog) or minuet
motion

A major finding of our work is that, depending on the initial position of C2, there are
two types of motion:
● Simple crossing (also denoted leapfrog): C2 catches up with C1, interacts and goes

away. The two capsules are not necessarily in the same shear plane.
● Minuet motion: C2 catches up with C1, interacts, overpasses C1, reverses its motion

and repeats the process one, two or three times before getting away.
The two motions are illustrated and analyzed in the following.

3.1. Single interaction: leapfrog motion

As a reference, we consider the situation where the two capsules are in the shear plane

on the same streamline (X
(0)
1
= 10a,X

(0)
2
= 0,X

(0)
3
= 0,Ca = 0.3). Similar computations

have been made by Lac et al. (2007) for pre-inflated capsules, but only the value of the
final trajectory shift is reported. Under Stokes flow conditions, the capsules must remain
in this plane. The trajectory of C2 is shown in Figures 2a,b (Movie 1).
When the flow is started, the two capsules are far enough from each other, that they
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(b)

X1/a

X
2
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X
(m)
2

X
(f)
2

X
(0)
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(c)
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-1
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-1.5

-1
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(d) (e) (f)

x1/ax1/a

x
2
/a

x
2
/a

x3/a

x
3
/a

C1(t1)
C2(t1)

Single

Figure 2: Leapfrog motion of two capsules with their centres in the same shear plane

(X
(0)
1
/a = −10,X(0)

2
= 0,X

(0)
3
= 0, Ca = 0.3). (a) Three-dimensional view of the trajectory

of C2. (b) G2 trajectory in the shear plane. (c) Three-dimensional view of the deformed
capsules at t1 when X1(t1) = 0. (d, e, f) C1 intersections with the three coordinates
planes at t1.
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V
1
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v
∞
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-0.1

-0.05

 0

 0.05

 0.1

V
2
/γ̇

a
V
3
/γ̇

a

X1/a

Figure 3: Evolution of C2 velocity during a leapfrog (X
(0)
1
/a = −10, X(0)

2
= X

(0)
3
= 0) or

minuet (X
(0)
1
/a =X(0)

3
/a = −2.6, X(0)

2
= 0) for Ca = 0.3.

behave as if they were almost alone in the fluid. Within γ̇t ∼ 6 they reach a roughly
ellipsoidal shape around which the membrane rotates, as shown in Figure 2d (see the
review by Barthès-Biesel (2016)). The deformation and rotation of C1 lead to a stresslet
that creates a small velocity field and a small depression. This perturbation displaces
C2 along the velocity gradient in the direction that moves it towards C1, as shown in
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Figure 4: Pressure and membrane energy evolution during the leapfrog and minuet
motions for Ca = 0.3. (a) Pressure p at the mid-point between G1 and G2; (b) membrane

elastic energy W . Leapfrog: X
(0)
1
/a = −10, X(0)

2
= 0, X

(0)
3
= 0. Minuet: X

(0)
1
/a = −2.6,

X
(0)
2
= 0, X

(0)
3
/a = −2.6.

Figure 2b. Note that this phenomenon is the opposite of the one observed by Doddi
& Bagchi (2008) when inertia is taken into account. As a consequence, V2(t) > 0 for
t > 0 and C2 is convected towards C1, as shown in Figures 2a,b. The only way for C2 to
overpass C1 is to ‘jump’ over it in the x1x2-plane (thus the term ‘leapfrog motion’). The
fact that the motion is constrained to the shear plane leads to a high velocity difference
∣∣V − v∞∣∣/γ̇a in the x1- and x2- directions (Figure 3). The evolution of the pressure
at the mid point between G1 and G2 (Equation 2.7) can also explain the interaction
phenomenon: indeed, as ∣X1(t)/a∣ decreases, the pressure in the lubrication film between
the two capsules increases (Figure 4a) and pushes C2 in the x2-direction, along which

the maximum displacement of G2 is X
(m)
2

. As C2 overpasses C1, the widening of the
lubrication film leads to a depression (Figure 4a), which decreases X2, until a final steady

value X
(f)
2

is reached when the two capsules are far apart (∣X1∣ ≥ 6a, in this case). The

final trajectory shift δ2 = ∣X
(f)
2
−X

(0)
2
∣ is 0.9a, and is equal to the one found by Lac et

al. under the same flow situation for a 5% pre-inflation. The finite value of δ2 indicates
that the two capsule interaction leads to self-diffusion effects in a dilute suspension of
capsules. The deformed profiles of C1 (equivalently of C2) in the x1x2-, x1x3- and x2x3-
planes are shown in Figures 2d, e, f at time γ̇t1 = 9.7, when the two capsules cross,
which we define by X1(t1) = 0. Figures 2d, f show that there is indeed a thin lubrication
film between the two capsules (which corroborates the pressure build-up) and that the
two capsules are highly deformed. The global deformation can be assessed through the
membrane elastic energy W given by Equation (2.9). The value of W (X1) −W∞, where
W∞ is the deformation energy of a single capsule, allows us to estimate the intensity of
the mechanical interaction between the two capsules. During the close interaction, the
two capsules undergo large transient deformation, leading to a peak in W −W∞ (Figure
4b). The separation process leads to some deformation oscillations, until a final steady
state is reached, which is identical to the single capsule one, elastic energy wise (Figure
4b).

3.2. Minuet motion

We now consider the case X
(0)
1
/a = −2.6,X(0)

2
= 0,X

(0)
3
/a = −2.6,Ca = 0.3, where

capsule C2 is located off the shear plane and can thus move freely in space: this leads
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Figure 5: Minuet of two capsules (X
(0)
1
/a = −2.6,X(0)

2
= 0,X

(0)
3
/a = −2.6,Ca = 0.3). (a)

Three-dimensional view of the trajectory of C2. (b) Projections of G2 trajectories in the
x1x2- and x1x3-planes. (c, d, e) C1 profile intersections with the three coordinates planes
at times t1 and t2 when X1(t1) =X1(t2) = 0.

to trajectories that are completely different from the ones described above. As in the
previous case, the rotation of C1 displaces G2 along the velocity gradient, so that C2

is convected towards C1. The three-dimensional trajectory of C2 is shown in Figure 5a,
where the two capsules are shown in their initial position (Movie 2). In order to get a
clearer grasp of the process, we analyse the trajectories of the projections of G2 in the
x1x2- and x1x3-planes in Figure 5b. As ∣X1(t)/a∣ decreases, the pressure increases slightly
(Figure 4a): this leads to a slight increase in both ∣X2(t)∣ and ∣X3(t)∣ (Figure 5b), which
allows enough space for capsule C2 to overpass C1 by moving around the x2-axis (insert

in Figure 5a). Correspondingly, the maximum displacement ∣X(m1)
2
∣ is smaller than in

the leapfrog situation. Similarly, the velocity difference ∣∣V −v∞∣∣/γ̇a remains small while
occurring in all three directions as shown in Figure 3. The energy variation W −W∞
is also very small (Figure 4b), which indicates that there is little mechanical interaction
between the capsules. This point is further corroborated by the quasi superposition of
the deformed profiles of C1 at time t1 when X1(t1) = 0, and when it is alone in the flow
(Figures 5c, d, e).
As the capsules separate, the small depression (Figure 4a) leads to a negative displace-

ment along the x2-axis, which takes G2 into the reverse flow region and entices C2 to
move back towards C1. The pressure is still negative when the reversal takes place, so that
∣X3(t)∣ decreases. As a consequence, there is not enough space for C2 to move around C1

in a x1x3-plane and a sideways leapfrog motion takes place, which is qualitatively similar
to the one that occurs in the shear plane, as described in the previous section: there is
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Figure 6: Minuet with multiple reversals for X
(0)
1
/a = −2.6, X(0)

2
= 0, X

(0)
3
/a = −2.6,

Ca = 0.2. The instants of close interaction when X1 = 0 are denoted t1, t2 and t3 in
chronological order. (a) Three-dimensional view of the trajectory of C2. (b, c) Projections
of G2 trajectories in the x1x2- and x1x3-planes. (d) Three-dimensional profiles at close
interaction.

a significant pressure build-up in the lubrication film, followed by a depression as the
capsules part (Figure 4a). The pressure variation leads to an increase of ∣X2(t)∣ up to a

value ∣X(m2)
2
∣, which is large enough to allow the further decrease to the final displacement

∣X(f2)
2
∣, without crossing into a reverse flow region. At time t2 when X1(t2) = 0, the two

capsules are closer than at time t1 and thus undergo a transient deformation as appears in
Figure 5a (insert) and in Figures 5d, e. Correspondingly, the mechanical energy W −W∞
undergoes a transient variation, which, however, is much smaller than the one that occurs
when the capsules cross in the shear plane (Figure 4b). We deduce that minuet motion
is less energy consuming than leapfrog motion.

If we now start with the same initial conditions (X
(0)
1
/a = −2.6,X(0)

2
= 0,X

(0)
3
/a = −2.6)

but reduce the capsule deformability by setting Ca = 0.2, two reversals occur, as shown in
Figure 6 (Movie 3 and Movie 4). The first reversal is essentially the same as for Ca = 0.3.
However, when the capsules cross again at time t2, there is still enough space to allow
crossing around the x3-axis. Furthermore, the displacement along the x2-axis is still
small (X2(t2)/a = −0.39), compared to the one observed for Ca = 0.3 (X2(t2)/a = −0.51),
so that the pressure induced trajectory shift forces G2 to cross again into the reverse
flow region: the capsule is thus convected again towards C1. During the third crossing,
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since ∣X3(t3)∣/a < 2, the capsule has to do a sideways leapfrog motion that leads to a
displacement X2(t2)/a = 0.92, that is large enough to accommodate the trajectory shift
without changing the flow direction of the capsule: the latter finally goes back in the
direction where it came from. Note that at time t3, the two capsules undergo a significant
transient deformation, due to a strong interaction. This phenomenon is unexpected in
view of the fairly large initial distance between the capsules.

4. What factors determine the motion type?

The type of motion (leapfrog or minuet) is determined by the evolution of X2(t)
after crossing, since it is a change of sign of X2(t) that causes reversal of motion. At
crossing, the film pressure displaces G2 along the velocity gradient, to a maximum value

∣X(m)
2
∣. After crossing, the separation process and the subsequent depression lead to a

displacement ∆2 of G2 back to the x1-axis. For leapfrog motion, the trajectory shift is

easily identified as ∆2 = ∣X
(m)
2
−X

(f)
2
∣ (see Figure 2b). When reversal occurs, the film

pressure decrease also leads to a trajectory shift ∆2, which is difficult to evaluate in a
simple fashion. However, since ∆2 is a consequence of the separation process, we can
surmise that it follows an evolution similar to the one found in leapfrog motion in the

shear plane, i.e. that it decreases when the capsule separation ∣X(0)
2
∣ and/or ∣X(0)

3
∣ increase

and when the capsule deformability Ca increases (Lac et al. 2007; Lac & Barthès-Biesel
2008; Pranay et al. 2010; Omori et al. 2013; Gires et al. 2014). We conclude that whenever

∣X(m)
2
∣ is less than ∆2, reverse motion is to be expected. The main parameters that

determine the values of ∣X(m)
2
∣ and of ∆2, are the initial capsule separation X

(0) and the
capillary number Ca. We now study their influence separately.

4.1. Effect of the initial capsule separation X
(0)

The effect of the initial offset ∣X(0)
3
∣ from the shear plane is shown for Ca = 0.3,X

(0)
1
/a =

−3.0 and X
(0)
2
/a = 0 in Figure 7. When ∣X(0)

3
∣ is small (e.g., ∣X(0)

3
/a∣ ≤ 2), the situation

is close to the one when the two capsules are in the same shear plane. Correspondingly,

they undergo a sideways leapfrog motion with a displacement ∣X(m)
2
/a∣ ≥ 0.4, which is

large enough to allow direct crossing (Figure 7a). For a larger offset ∣X(0)
3
/a∣ ≥ 2.6, C2

has room to move around C1 in a x1x3-plane: then the displacement ∣X(m)
2
/a∣ ∼ 0.2 is

small (Figure 7a), and thus reversal motion occurs during separation. As ∣X(0)
3
∣ increases,

the influence of C1 decreases and the two capsules have almost no relative velocity. The

motion shown in Figure 7 for ∣X(0)
3
/a∣ = 4 is near the limit of what can be reasonably

computed: indeed the capsule reaches X1 = 0 at time γ̇t1 = 50 at the first crossing, and
at time γ̇t2 = 266 at the second crossing. We conclude that the minuet motion is slow.

We now turn to the effect of the initial distance ∣X(0)
1
∣ on the trajectory of C2, as shown

in Figure 8 for Ca = 0.3, X
(0)
2
/a = 0 and X

(0)
3
/a = −2.6. Note that since ∣X(0)

3
/a∣ > 2, C2

has room to move around C1 in a x1x3−plane. However, the far field perturbation created
by C1 is a stresslet, which varies as the square of the inverse distance G1G2. It is this
perturbation that displaces G2 along the x2-axis and gives C2 the small relative approach

velocity, which leads to crossing. This perturbation velocity varies as [X(0)
1
/a]
−2

when

∣X(0)
1
∣/a >> 1 ( ∣X(0)

1
∣/a > 4 in this particular case). Even though it is small, its prolonged

effect over a long time leads to a significant ∣X(m)
2
∣ displacement and thus to a sideways

leapfrog motion. Note that the initial position X
(0)
2
/a = 0 is unstable when the capsules
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Figure 9: Phase diagrams for motion type: (a) Motion type as function of Ca and X
(0)
3

for X
(0)
1
= X

(0)
3

and X
(0)
2
= 0. The points represent the positions of G2 at rest: × one

oscillation, + two oscillations, ◆ three oscillations. (b) Motion type as a function of Ca

and X
(0)
2

for ∣X(0)
1
∣/a = ∣X(0)

3
∣/a = 2.6.

interact. However, when the initial distance ∣X(0)
1
∣ becomes of order a (e.g., ∣X(0)

1
∣/a = 3),

the displacement ∣X(m)
2
∣ has no time to build up and remains small: then reversal occurs.

Similar situations of capsule interaction have been considered by Lac & Barthès-Biesel
(2008), who did not report any motion reversal, even when they studied three-dimensional

motions with non zero values of X
(0)
3

. This is due to the fact that they started with

X
(0)
2
/a ≥ 0.5 and X

(0)
1
/a ≥ 10, values which were too large for minuet to occur.

4.2. Effect of capsule deformability

Under given flow conditions, the capsule deformability is accounted for by the capillary
number Ca and increases with it. Some global results are presented under the form of

phase diagrams. For X
(0)
2
= 0 and ∣X(0)

1
∣ = ∣X(0)

3
∣, the effect of varying the initial capsule

separation and deformability is shown in Figure 9a. Minuet thus occurs roughly for

2 < ∣X(0)
3
∣/a < 4. For ∣X(0)

3
∣/a > 4 ∼ 5, the capsule separation is so large that the relative

velocity is very small and the capsule doublet configuration remains essentially stationary.

The effect of Ca is complex: for a typical separation ∣X(0)
3
∣/a = 2.6 and up to Ca ≤ 0.7, a

minuet takes place with one reversal for moderate values of deformability (0.2 < Ca < 0.7)
or two (or more) reversals when Ca ≤ 0.2. This transition from one to two reversals when
Ca is reduced has been illustrated in section 3.2. However, for large capsule deformability
(Ca > 0.7), no motion reversal occurs: the capsules are so deformed and tilted towards
the flow direction, that, when they overpass, their trajectory perturbation is small. The

effect of X
(0)
2

is shown in Figure 9b for the typical case ∣X(0)
1
∣/a = ∣X(0)

3
∣/a = 2.6. Minuet

occurs only for small values of ∣X(0)
2
∣/a and moderate Ca, i.e., for small relative velocities

between two capsules with moderate deformability. This limited range of minuet motion
explains why it had not been detected before.
Note that the inherent deformability of a capsule even when Ca is very small, makes

it different from a rigid sphere. Consequently, it is impossible to find permanent capsule
doublets like those predicted by Batchelor & Green (1972b) for two spheres freely
suspended in simple shear flow: indeed such doublets can occur only for perfect spheres
as pointed out by the authors.
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Figure 10: Domain of doublet formation around capsule C1 for X
(0)
2
= 0, Ca = 0.3 and

a NH membrane. The sphere of radius 2a is a steric exclusion area, while the grey zone
between the spheres of radii 2.2a and 2a is an exclusion region, that leaves a space 0.2a
between the two capsules. The points represent the positions of G2 at rest, and the
symbols indicate the motion type: × minuet, ◻ leapfrog, ◇ steady doublet. The position
of the boundary between the two domains for Ca = 0.5 is indicated by a dash line.

4.3. Region of minuet motion

The domain around C1, where long term doublets are formed is illustrated in Figure
10 for Ca = 0.3. The sphere of radius 2.2a centered on G1 is an exclusion region, that

leaves a space 0.2a between the two capsules. When X
(0)
1
=X

(0)
2
= 0, the capsule doublet

separated by X
(0)
3

, remains stationary. Whenever the centre of capsule C2 is located
in the yellow area, the two capsules will cross once (leapfrog motion) and separate.
In the green area, the two capsules will remain close and oscillate a few times before

eventually separating. For ∣X(0)
3
∣/a ≳ 4, the interaction becomes weak, so that the doublet

configuration remains essentially stationary. The minuet domain shown in Figure 10
is in fact three-dimensional and extends in the x2-direction over a small distance of
order 0.06a for Ca = 0.3 (see Figure 9b). When Ca is decreased the boundary between
leapfrog and minuet motions does not change appreciatively, but the thickness of the
three-dimensional minuet domain increases. Conversely as shown in Figure 10, when Ca

increases, the boundary is tilted towards the x3-axis and the minuet domain thickness

decreases. Note that for X
(0)
2
≥ 0.5a, the whole region would be yellow (apart from the

exclusion area).

An important consequence of the minuet motion is linked to the fact that it tends
to push together two capsules that were initially distant and not expected to interact
much. This point is illustrated in Figure 6 where the initial separation G1G2 − 2a = 1.7a
is decreased during crossing to a film with thickness roughly 0.2a, which is thin enough
to lead to potential physicochemical interactions or damage.
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Figure 11: Interaction process of two capsules with a NH membrane or a SK membrane

for Ca = 0.5, X
(0)
1
/a = −3, X(0)

2
= 0, X

(0)
3
/a = −2.6. (a) The NH capsule does a sideways

leapfrog motion, while the SK capsule does a motion reversal. (b) Deformed profiles of
the capsule C1 at time t1 defined by X1(t1) = 0.

4.4. Effect of the membrane constitutive equation

It is of interest to assess the influence of the wall constitutive law, as all the above
results have been obtained for a neo-Hookean (NH) membrane. In particular, it is possible
to assume that the principal tensions and elongations are related by the Skalak law (SK)
(Skalak et al. 1973), which reads:

T1 =
Gs

λ1λ2

[λ2

1(λ
2

1 − 1) +C(λ1λ2)2[(λ1λ2)2 − 1)] . (4.1)

The surface shear elastic modulus is Gs and the area dilation modulus is given by Ks =
(1 + 2C)Gs. The two laws (2.8) and (4.1) predict the same small deformation behavior
for C = 1, but for large deformations, the NH law is strain-softening, whereas SK law
is strain-hardening (Barthès-Biesel et al. 2002). Correspondingly, for the same value of
Ca, the deformation of a single capsule in simple shear flow is larger for a NH membrane
than for a SK one (Barthès-Biesel 2016).

We can then expect that the transition between a leapfrog and a minuet motion will
happen for values of Ca that will be different for capsules with SK or NH membranes.
In order to verify this prediction, we model the interaction of two capsules enclosed

either by an SK membrane (C = 1) or an NH membrane, in the case X
(0)
1
/a = −3.0,

X
(0)
2
= 0, X

(0)
3
/a = −2.6 and Ca = 0.5. As shown in Figure 11a, the NH capsules do a

sideways leapfrog motion whereas the SK capsules undergo one oscillation and reverse
their direction of motion. The explanation to this difference of behavior is linked to the
fact that the NH capsule is more deformed than the SK one (Figure 11b), and that its
trajectory displacement ∆2 is thus small enough to prevent it from going into the reverse
flow region.
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5. Global effects: trajectory shift and doublet duration

5.1. Trajectory shift

When two capsules with a NH membrane are in the same shear plane (X
(0)
3
/a = 0), it is

a well established fact that after crossing, the two capsules are irreversibly displaced from

their initial trajectory: for a given value of Ca, the trajectory shift δ2 = ∣X
(f)
2
∣ − ∣X(0)

2
∣

is maximum for X
(0)
2
/a = 0, decreases when ∣X(0)

2
∣ increases and becomes almost zero

for ∣X(0)
2
∣/a > 2 (Lac & Barthès-Biesel 2008; Pranay et al. 2010; Omori et al. 2013;

Gires et al. 2014). The effect of X
(0)
3
/a is mostly reported for the case X

(0)
2
/a = 0.5:

then δ2 is maximum for X
(0)
3
/a = 0, decreases to almost zero for ∣X(0)

3
/a ≥ 2 (Lac &

Barthès-Biesel 2008; Gires et al. 2014). The trajectory shift along the vorticity direction

δ3 = ∣X
(f)
3
∣ − ∣X(0)

3
∣ is small and less than 0.1a (see also Figure 15). The effect of Ca

is small and does not change the findings. The influence of the membrane constitutive
law on the leapfrog motion in the shear plane was studied by Pranay et al. (2010), who
compared the effect of a NH or SK law (C = 10) on the trajectory shift δ2. They found
that for the same Ca, δ2 is larger for an SK law than for an NH one: this is due to the
high apparent rigidity of the SK law, linked to a high value of the area dilation modulus.

The new results for X
(0)
2
/a = 0 are illustrated for Ca = 0.3 in Figure 12, where they are

compared with the results of Lac & Barthès-Biesel (2008), obtained for X
(0)
2
/a = 0.5. For

X
(0)
3
/a ≤ 2 when a leapfrog motion occurs, the shift δ2 decreases with X

(0)
3
/a and is about

50% larger for X
(0)
2
/a = 0 than for X

(0)
2
/a = 0.5 (Figure 12a): this is in agreement with the

previously reported evolution of δ2 with X
(0)
2
/a and X

(0)
3
/a. However, when the doublet

motion evolves from leapfrog to minuet, a bifurcation takes place for ∣X(0)
3
∣/a = 2.1± 0.1:

δ2 jumps to values that are about one order of magnitude larger than the ones that

would be expected from the previous X
(0)
2
/a = 0.5 results or from the prolongation of the

leapfrog curve for δ2.
Similarly, whereas the shift δ3/a remains small during the leapfrog motion, it becomes
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2
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with Ca = 0.3 (Figure 12). The dashed lines correspond to a Skalak membrane (C=1); ◯
Ca = 0.5, ◻ Ca = 1.0. Open symbols: leapfrog motion; filled symbols: minuet motion.

large and negative for X
(0)
2
/a ≥ 2 (Figure 12b). This means that at the end of the

interaction process, the capsule C2 is nearer the shear plane x1x2, than when the flow
started. The minuet motion thus leads to a shift δ3 along the vorticity direction, which
tends to reduce the initial distance between the two capsules, in opposition to a diffusive
effect. But since the capsule separation in the x3-direction is reduced, a sideways leapfrog
motion takes place, with a resulting large value of δ2, and thus diffusive effects along
the shear gradient direction. Decreasing Ca does not change much the above results.
However, when the capsule deformability increases, the bifurcation occurs for increasingly

large values of ∣X(0)
3
∣/a and is difficult to compute as the minuet becomes very slow (see

section 5.2).
The influence of the membrane law is shown in Figure 13: the SK capsule undergoes

a leapfrog motion for ∣X(0)
3
∣/a ≤ 2 and then makes a minuet for ∣X(0)

3
∣/a ≥ 2.2. The

evolutions of δ2 are almost superimposed for an NH membrane (Ca = 0.3) and for an
SK membrane (Ca = 0.5). When the SK capsule deformability increases to Ca = 1.0, the

transition between leapfrog and minuet motions occurs further away, around ∣X(0)
3
∣/a ∼

3.5. We can then conclude that, indeed, the effect of a strain-hardening membrane would
just be to shift the results to larger values of Ca, without changing the essence of the
interaction process.

5.2. Doublet duration

The minuet motion, when it occurs, is very slow as shown in Figure 14 forX
(0)
1
/a = −3.0

and X
(0)
2
/a = 0. The time γ̇t1 at which the first crossing occurs, increases with the

separation ∣X(0)
3
∣/a, but does not depend on Ca, the membrane law or the ulterior type

of motion (leapfrog or minuet). The fact that γ̇t1 increases with ∣X
(0)
3
∣/a is due to the fact

that the relative velocity of C2, which is initially zero, builds up from a flow perturbation
(due to C1), the intensity of which decreases with the square of the distance between the
two capsules. The time γ̇t2 of the second crossing is quite large and increases significantly
with capsule deformability and distance.
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Figure 14: Effect of Ca, X
(0)
3

and constitutive law on the times γ̇t1 and γ̇t2 of first and

second crossings (X
(0)
1
/a = −3.0 and X

(0)
2
/a = 0).

This means that the two capsules remain close to each other for a long time, while

drifting slowly. When ∣X(0)
3
∣/a ≥ 4, γ̇t2 becomes too large to be reliably computed (the

values of γ̇t2 for Ca = 1.0 and an SK membrane are very high, and are just here to
illustrate the phenomenon).

6. Discussion and conclusion

The situation that we have studied pertains to a semi-dilute suspension of capsules that
is suddenly put in motion by a simple shear flow. The novel aspect of our work is that we
consider a pair of nearby capsules with their centres in (or near) the plane normal to the

velocity gradient (X
(0)
2
∼ 0). This capsule configuration had never been studied before,

because it entails long computations. Indeed, the only results on capsule interaction off
the shear plane had been obtained for capsules with a significant relative velocity, which
prevented minuet from occurring and which led to weak capsule interactions and small
trajectory displacement.

When X
(0)
2
∼ 0, the important results are:

● The capsule pair can remain stable for a long time, while dancing a minuet.
● When they separate, the capsules can reverse direction.
● When one or more oscillations occur, the irreversible trajectory shift is large.
● This minuet dance progressively brings the capsules to closely interact and deform

significantly.
● The less deformable the capsule, the more prone it is to do a minuet.
● The zone where a minuet can occur has been identified.

During the close interaction, the film thickness between the two capsules is of the order
of ∼ 0.1a − 0.2a. For small capsules, this may lead to physico-chemical interaction.
In order to make the problem consistent, we considered as initial condition a suspension

of spherical capsules at rest, and suddenly started the flow. When the capsules are pre-
deformed to the profile that they would have if they were alone in the flow, we have
verified that they take the same motion (leapfrog or minuet) as if they were initially
spherical: the only difference is that, for pre-deformed capsules, the first close interaction
happens γ̇t ≤ 5 earlier than for spherical capsules. It follows that the minuet interaction is
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Figure 15: Projection of G2 trajectories for β = 1.05,Ca = 0.45 and different initial

positions. Capsule C2 starts from X
(0)
1
/a = −20, X(0)

2
/a = 0.5 and different X

(0)
3

. The
comparison between the results of Lac & Barthès-Biesel (symbols) and the present results
(lines) shows very good agreement.

not restricted to the transient start of the flow of a suspension. For example, from Figure
6, we note that at the end of the interaction, when C2 is located at X1/a = 5.0,X2/a =
0.54,X3/a = −1.1, it has almost recovered its equilibrium shape. Suppose that C2 then
meets a new capsule C3, located in the vicinity of X1/a = 7.6,X2/a = 0.54,X3/a = 1.5.
Being in the same relative configuration as C1 and C2 were at time t = 0, capsules C2

and C3 will do a minuet. We can thus expect minuet motions in semi-dilute suspensions.
In conclusion, we have shown a novel and unexpected effect in the pair interaction

of two capsules, that depends on the relative position of the two particles. It would be
interesting to check experimentally the existence of long lasting capsule doublets that do
a minuet motion.
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Appendix A

The results of the BI-FE model (1280 elements) are first compared to those obtained
by Lac et al. (2007) and Lac & Barthès-Biesel (2008) for two pre-inflated capsules with an
NH membrane and radius βa, where β is the inflation ratio. The pre-stress is created by
means of an internal pressure p0, which leads to an isotropic elastic tension T0 = p0a/2,
given by Laplace’s law. For a neo-Hookean membrane, T0 = 6Gs(β − 1) in the limit of
small inflation. The trajectories of G2 obtained with the two methods show very good
agreement, as illustrated in Figure 15 for Ca = 0.45.
As the minuet motion is a novel phenomenon, which occurs over fairly long times, it

is of importance to verify that the trajectories do not suffer from error accumulation
over time. The test case consists of two capsules enclosed by an SK membrane (C = 1)

with Ca = 0.5, X
(0)
1
/a = −3.0, X(0)

2
= 0 and X

(0)
3
/a = −2.4. As shown in Figure 13,
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those capsules undergo a minuet with one reversal. The choice of an SK law rather than
an NH one enables us to use larger values of Ca, and thus larger time steps for similar
trajectories. As shown in Figure 16a for 1280 elements on the capsule surfaces, decreasing
the time step γ̇∆t from 2×10−3 to 5×10−4 has no effect on the trajectory. Conversely, we
keep the same time step γ̇∆t = 2 × 10−3 and compare the trajectories obtained with two
spatial meshes with 1280 or 5120 elements, corresponding to mesh sizes ∆hc = O(0.1a)
and O(0.05a), respectively. As shown in Figure 16b, the trajectories differ by at most
one (fine) mesh size at the interaction point. We conclude that the trajectories, that are
presented in this study using 1280 elements and γ̇∆t = 5× 10−4, are reliable and that the
final trajectory shifts δ2/a and δ3/a have an error of the order of 0.05a.
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