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Abstract

Microcapsules are liquid droplets enclosed by a thin elastic membrane. Being

suspended in an external fluid, they undergo large deformations when flowing.

Their deformation can be solved numerically, but the resolution of the fluid-

structure interactions (FSI) requires extremely long computation times. This

is a major constraint for instance when identifying the membrane mechani-

cal properties from experimentations of microcapsules flowing in a microfluidic

channel of similar size (Hu et al PFE 2013). We propose to apply Model Or-

der Reduction (MOR) to predict in real time the steady-state capsule deformed

shape, needed to determine the membrane elasticity. A database of the capsule

deformed shapes was obtained numerically by solving the three-dimensional FSI

through a finite element - boundary integral method coupling, and by varying

systematically the two non-dimensionalized parameters of the problem: the cap-

illary number, ratio of the viscous to the elastic forces, and the capsule-to-tube

size ratio. Among the MOR techniques, we chose to apply Proper Orthogonal

Decomposition (POD) onto the database, which provides a vector basis of prin-

cipal components, defining a multi-dimensional vector space. The advantage is

that, when all the capsule shapes of the database are mapped into this new vec-

tor space, they form a manifold (smooth hypersurface) that represents all the

admissible solutions of the problem. We show that POD with a manifold walking

technique can be successfully applied to microcapsule data sets, whether they

are Lagrangian (e.g. known position vector fields) or Eulerian (i.e. when data is

acquired experimentally or numerically using methods like level sets). In both
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cases, the problem dimensionality is reduced, the predicted capsule shapes are

obtained within computation times of milliseconds, and they accurately fit the

full FSI simulations. This paves the way to real-time computations for capsules

in flow, while retaining all the physical ingredients of the FSI problem.

Keywords: Microcapsules, Reduced order model, Proper Orthogonal

Decomposition, Manifold, Deformed capsule shape
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1. Introduction

Capsules are liquid droplets, enclosed within a thin deformable solid mem-

brane, whose size ranges from a few microns to a few millimeters. Present

in nature in the form of red blood cells, vesicles or eggs, capsules also have

multiple applications across industries. Artificial microcapsules are, among oth-5

ers, used extensively in the biotechnological (Ma and Su, 2013), pharmaceuti-

cal (Cole et al., 2008; Yih and Al-Fandi, 2006), cosmetic (Miyazawa et al., 2000),

food (Gibbs et al., 1999) and textile industries (Nelson, 2002) to protect mate-

rial (active substances, aromas, drugs or transgenic cells) from the surrounding

environment, and to control its targeted delivery when desired. Whether nat-10

ural or artificial, capsules are typically suspended in an external fluid and are

thus subjected to hydrodynamic forces when the fluid is in motion. This leads

to strongly coupled fluid–structure interactions (FSI), which tend to be highly

non-linear owing to the large deformations experienced by the capsule mem-

brane (Barthès-Biesel, 2011).15

Over the last three decades, a very large number of numerical studies have

investigated capsule–flow interactions (see Barthès-Biesel (2016) for a review).

They are complex to model, as microcapsules are three-dimensional closed ob-

jects with a liquid core and a hyperelastic membrane. Their three-dimensional

deformation and flow are thus basically inertialess, which is non-conventional20

within the field of fluid–structure interaction numerical modeling. Since the end

of the 1990’s, the investigation of capsule dynamics has been complemented by

an increasing number of experimental studies thanks to the advent and rise of

microfluidic and microrheological technologies. The latter have indeed made it

possible to study the motion and deformation of microcapsules with high ac-25

curacy (e.g. Chu et al. (2011); Koleva and Rehage (2012); De Loubens et al.

(2014); Gires et al. (2016)).
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Numerical and experimental approaches have many points in common. In

both cases, the generated data may either be Lagrangian or Eulerian, depending

on the numerical schemes and experimental acquisition technique. But the large30

body of previous studies on capsules and cells has shown that a 3D Lagrangian

follow-up of the points of the capsule membrane is necessary to determine the

overall dynamics of the deformable particle (e. g. Fischer et al. (1978); Abkarian

et al. (2007); Dupont et al. (2016)). This explains why the classical numerical

algorithm, since the pioneering work of Barthès-Biesel and Rallison (1981), con-35

sists of a Lagrangian tracking of the membrane nodes, whose time evolution is

obtained from the integration of the capsule wall velocity provided by the fluid

solver. But novel strategies based on a pure Eulerian description are, however,

emerging to solve FSI problems (Cottet et al., 2008). They rely on a numerical

analysis of the particle shapes and surfaces on a fixed framework in order to40

determine the strain and deformation fields without any explicit parametriza-

tion of the moving particle. Recently, they have been successfully applied to

capsules in flow (Milcent and Maitre, 2016). Experimentally, the acquired data

are by essence Eulerian, the only way to perform Lagrangian tracking being to

place tracers on the capsule membrane, which is cumbersome and difficult to45

achieve on such small particles. Generally, experimental images thus consist

of two-dimensional grayscale images, and their post-processing involves image

processing techniques to extract relevant features such as the capsule deformed

shape.

Another common feature of numerical and experimental approaches is the50

large set of data that are generated. In both cases, they necessitate large stor-

age capacity and their post-processing tends to be time-consuming. Numerical

simulations additionally face the issue of the long computational time required

to solve the strongly coupled fluid-structure interaction (FSI) schemes.

Model order reduction (MOR) techniques can help decrease such model and55

data complexity by reducing the dimensionality of the generated data. Very

significant time saving can be achieved by transforming data that depend on

a large number of parameters into a small set of principal components that

preserves the main original characteristics. Some of the usual MOR techniques

are the Proper Orthogonal Decomposition (POD) (Jolliffe, 1986; Loeve, 1948),60

the Proper Generalized Decomposition (Ammar et al., 2006, 2007; Chinesta

et al., 2013), and the Reduced Basis (Maday and Rønquist, 2002; Eftang, 2011)

methods.

MOR techniques, which have never been applied to predict the deforma-
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tion of capsules in flow, can offer the framework needed to solve the scien-65

tific challenges that remain to be met to generalize the use of microcapsules in

health-related applications. Microcapsules indeed have the potential to become

a solution of choice for encapsulation, as they can carry much larger quantities

of active substances than the nanoparticles, which are typically used at present.

But to become a robust and reliable vector solution, one needs to be able to70

predict their deformation and membrane tension under flow (and thus their po-

tential rupture) and characterize the membrane resistance in order to find the

optimal compromise between deformability and resistance for each application.

New techniques of characterization have been devised (Chu et al., 2011; Hu et al.,

2013; De Loubens et al., 2014; Gubspun et al., 2016) as microfluidics matured75

over the last decade: the shear/Young moduli of the capsule wall have been

determined in microcapillary/extensional flows by comparing the experimen-

tal steady-state capsule profiles to databases of profiles calculated numerically.

Such experiments are much less cumbersome to perform on entire batches of

microcapsules than atomic force microscopy indentation or micropipette aspira-80

tion, and can be automatized. But the inherent issue associated with them is the

need to run the full theoretical fluid-structure interaction model corresponding

to the experiment to identify the mechanical property, as it is computationally

costly. The objective of the paper is to analyze whether MOR (and in particular

Proper Orthogonal Decomposition) is suitable to reduce the dimensionality of85

the complex problem and sufficiently precise to determine the steady-state de-

formation of a capsule in flow without launching the full-simulation. We aim at

identifying if it is possible to accurately predict the capsule deformation in real

time, and if it can be done with equal precision whether the data is Lagrangian

or Eulerian.90

We focus on the identification technique based on the steady-state flow of a

microcapsule in a microfluidic channel of similar characteristic size (Chu et al.,

2011; Hu et al., 2013). Its deformed profile (Figure 1) is known to be only

a function of two non-dimensionalized parameters: the capsule-to-channel size

ratio and the capillary number, ratio of the viscous to the elastic forces. The data95

sets used as input for the MOR procedure are the steady-state capsule shapes

that we have computed off-line using a 3D FSI numerical scheme coupling the

Finite Element (FE) method, used to solve for the capsule deformation, with the

Boundary Integral (BI) Method, used to solve for the inner and outer fluid flows

(Hu et al., 2012). They are computed varying the two controlling parameters100

in a systematic way and compiled in a comprehensive database. The advantage
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Figure 1: Pictures of ovalbumin microcapsules flowing in a microfluidic channel (cf Chu et al.
(2011)).

of using numerical nodal data is that they are inherently Lagrangian, but can

easily be transformed into a Eulerian field, by calculating, for instance, the

signed distance of the points in space to the capsule membrane. We thus have

the possibility to not only see whether reduced-order modeling approaches can105

be used to predict capsule shape, but also to compare the precision of POD

when it is applied to Lagrangian and Eulerian similar-sized data sets.

We will first describe, in §2, the physics of the problem at stake and the

numerical method of the FE-BI code, and detail how POD is applied to the

database containing the steady-state capsule shapes. In §3, we will first analyze110

the precision of the capsule shapes reconstructed using POD by comparing them

to the ones computed with the full FSI numerical code. We will try to predict

the capsule deformation for parameter values that are not included within the

database, by using a so-called manifold walking strategy. We will finally trans-

form the Lagrangian numerical data into a Eulerian data field and compare the115

precision of the predictions for Lagrangian and Eulerian data sets. This will

allow us to explore the potential of using POD to predict capsule shapes from

experimental data (inherently Eulerian). In §4, we will eventually analyze the

influence of the parameters of the POD method before providing concluding

remarks in §5.120

2. 3D numerical model of a capsule flowing in a tube and Proper

Orthogonal Decomposition of the deformed capsule contours

2.1. Problem description

We consider an initially spherical capsule flowing in a microfluidic channel

of comparable size. The channel is a long prismatic tube with a constant square125

cross-section of side 2` (Fig. 2). The corners are rounded over one mesh in order

to avoid solving for the flow in the vicinity of a sharp angle. The capsule is sus-

pended in an incompressible Newtonian liquid of viscosity µ and density ρ that
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Figure 2: Longitudinal and cross-sectional views of the configuration modeled in the numerical
simulation: an initially spherical capsule of radius a is positioned at the center O of a square-
section microchannel of side 2` and subjected to a Poiseuille flow oriented in the z-direction.

Figure 3: Snapshots, provided by the full 3D FSI numerical simulations, of the shapes for a
capsule flowing along the microchannel from rest to steady state (Ca = 0.12 and a/` = 0.9).
The capsule contours are given in the x = 0 plane at the non-dimensional times Ut/` = 0 (a),
0.2 (b), 0.6 (c) and 2.4 (d).

flows with mean velocity V . The velocity field in the absence of particle, v∞, is

the solution of Poiseuille flow within a duct with square cross-section (Pozrikidis,130

1997; Hu et al., 2012).

At t = 0, the spherical capsule of radius a is placed at the middle O of

the channel (Fig. 2). The capsule is chosen to be filled with the same liquid

as the external fluid to avoid buoyancy effects and because the capsule pro-

file is, at steady-state, independent of the properties of the internal fluid, as135

it is at rest. The capsule wall is assumed to be infinitely thin and made of

an impermeable, hyperelastic isotropic material. It is considered to follow the

neo-Hookean (NH) law, with a surface shear elastic modulus Gs and an area di-

latation modulus Ks = 3Gs (Barthès-Biesel et al., 2002). This law corresponds

to a strain-softening behavior under large deformation. It has been chosen,140

because previous experimental studies have shown that the membrane of oval-

bumin and human serum albumin capsules obey to this law, and that it is the

most appropriate to describe their mechanical behaviour (Chu et al., 2011; Hu

et al., 2013; Gubspun et al., 2016). When placed in flow, the elastic membrane

deforms under the hydrodynamic forces (see the snapshots of the capsule shape145

provided at various instants of time in Fig. 3).

6



(a) (b)

Figure 4: Meshes of the undeformed spherical capsule (a) and of the prismatic channel (b).

2.2. Numerical resolution of the fluid-structure interactions

Owing to the micrometric size of the capsule, inertia effects are negligible

for both the fluids and the capsule membrane. The fluid-structure interaction

problem is thus quasi-steady and the fluid flows obey the Stokes equations. The150

problem is solved using the numerical method described in Walter et al. (2010)

and (Hu et al., 2012), which couples a boundary integral method for the flow

with a finite element method for the membrane mechanics.

The mesh of the capsule is generated by inscribing a regular icosahedron in

a sphere, and subdividing its faces sequentially into 4 new elements. This is155

repeated until the desired number of elements is reached (Walter et al., 2010;

Hu et al., 2012). In this work, the capsule mesh consists of n = 2 562 nodes,

i. e. 5 120 elements (Fig. 4a). The mesh of the tube has 1 905 nodes (i. e. 3 768

elements) and has been refined in its central region, where the capsule is placed

(Fig. 4b).160

The equations are solved within the frame of reference of the moving capsule,

the origin O of the coordinate system (Fig. 2) being matched with the center of

mass of the capsule at each time step. Thus, at each simulation time step, the

velocity of the center of mass is calculated and the entire capsule is moved back

by a corresponding distance, so that it remains centered in the refined domain165

of the tube.

The two main input parameters of the numerical method are the size or con-

finement ratio a/`, which represents the ratio between the capsule initial radius

and the channel cross dimension, and the capillary number Ca = µ V /Gs, which

is the ratio between the viscous forces and the elastic forces in the membrane.170

The outputs are the deformed capsule shape, the velocity of the capsule cen-

troid and the elastic tension distribution in the membrane. The time required

to calculate the flow and deformation of a capsule from its initial position at

rest until it reaches steady-state ranges from a few days to a few weeks using a
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Figure 5: Values of the capillary number Ca and of the confinement ratio a/` for which
the steady-state capsule deformation have been included in the database. No steady-state
deformation can be obtained above the dashed line for the neo-Hookean constitutive law.

computer with the current computational power, depending on the selected val-175

ues of the 2 input parameters. The time step varying linearly with the capillary

number, the computational time increases when the capillary number becomes

very small compared to 1.

2.3. Database of capsule deformed shapes

Simulations of capsules in flow have been run varying the two governing180

parameters in the range [0, 0.2] for the capillary number and [0.75, 1.2] for the

confinement ratio. Only the simulations for which a steady-state shape was

reached were retained in the database. Let P be the set of values of capillary

numbers Ca and confinement ratios a/` for the 95 simulations that have been

selected (Fig. 5). No deformed capsule shape exists for simulation parameters185

above the dashed line. This phenomenon, described in Barthès-Biesel (2011)

and clearly illustrated in the experimental study of Chu et al. (2011), is a di-

rect consequence of the fact that many capsules (like the ones with a proteic

membrane) exhibit a strain-softening mechanical behavior. The database is

then constituted of the set of the three-dimensional deformed capsules shapes190

computed at steady-state for the 95 simulations.

Fig. 6 shows examples of capsule contours included in the database. At low

values of Ca, the initially spherical capsule takes a bullet-like shape at steady

state (Figs. 6a and 6d). When the capillary number is increased, a change in

concavity occurs at the rear of the capsule: the capsule then has a parachute-195

shape (Figs. 6b-c and 6e-f). The capsule is limited in the x- and y-directions

by the channel walls, but extends in the z-direction under the hydrodynamic
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(a) (b) (c)

(d) (e) (f)

Figure 6: Examples of steady-state capsule contours in the x = 0 plane. (a) Ca = 0.005, a/` =
0.85, (b) Ca = 0.06, a/` = 0.85, (c) Ca = 0.15, a/` = 0.85 (d) Ca = 0.01, a/` = 1.1, (e)
Ca = 0.03, a/` = 1.1, (f) Ca = 0.07, a/` = 1.1.

forces: the capsule length depends on the confinement ratio and varies between

1.3` and 2.9` in the cases shown in Fig. 6.

3. Proper Orthogonal Decomposition of the capsule deformed shapes200

3.1. POD of the 3D Lagrangian position vectors

Proper Orthogonal Decomposition is an efficient statistical technique for

data analysis, which allows to approximate a high-dimensional set of observa-

tions (containing probably correlated variables) with a reduced-dimension sys-

tem of linearly uncorrelated variables called principal components (Antoulas205

and Sorensen, 2001). These result from the determination of a basis of orthog-

onal principal modes that can be viewed as representative of the most probable

observations.

As general framework, let C = {Θc | c ∈ N, c = 1 : Nc} be the available data

set. Each of the Nc capsule shapes, Θc, corresponds to given values of the

parameter vector θ, defined such that θ1 = Ca and θ2 = a/`. The capsule

contour information Θ that is available from the 3D fluid-structure interaction

simulations is the 3D Lagrangian position vectors at the n nodes located on

the membrane of each of the Nc = 95 capsules. Let xc
i = (xci1, x

c
i2, x

c
i3) be

the position vector for the node (i)i=1:n of the cth capsule shape contained in

the database. All the position vectors of the cth capsule shape can then be

rearranged in a single vector xc = (xc11, x
c
12, x

c
13, . . . , x

c
n1, x

c
n2, x

c
n3) of dimension
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Nx = 3n. The proper orthogonal decomposition consists in finding an orthog-

onal basis of functions (ψm)m=1:M (i. e. the principal components) that allows

to approximate the position vector xc by

xc '
M∑

m=1

αc
mψm, (1)

where M is the dimension of the POD basis (i. e. the number of modes) and

αc
m is the coefficient associated with the mth principal component. Eq. (1) is210

written in the case of centered data (i.e. when the mean value of the vectors

xc is equal to the null vector 0). In the case of a non-zero mean value, it is

otherwise classical to center the data by subtracting the mean value to each

data point, before applying the POD decomposition.

One method to compute the orthogonal basis (ψm)m=1:M is to create the

data matrix X of dimension Nx×Nc with the node position vectors (xc)c=1:Nc

arranged in columns, i. e. X =
[
x1 x2 · · · xNc

]
, and to apply the Singular

Value Decomposition (SVD) to it. The matrix X is then decomposed into

X = UΣV T, (2)

where the superscript T stands for matrix transposition, Σ is an Nx ×Nc rect-215

angular diagonal matrix composed of the singular values of X, and where U

and V are orthogonal square matrices of orders Nx and Nc, respectively, which

represent the left and right singular vectors of X. Note that the singular values

are arranged in decreasing order of variance (the accounted variability in the

data), so that the first column of U is the mode associated with the highest220

coefficient. Indeed, the columns of the matrix U correspond to the principal

components ψm.

The advantage of building the orthogonal basis is that the least relevant in-

formation present in the data (xc)c=1:Nc
can be removed, by only keeping the

M first modes that are sufficient to approximate the position vectors with a

good precision. By removing the high-order modes having very small or null

coefficients, one creates a reduced-order model constituted of the first few prin-

cipal components. The low-rank approximation of X (Eq. 1) is thus obtained

by truncating U . The corresponding α-coefficients are obtained by project-

ing the capsule position vectors xc onto the new orthogonal basis of principal
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Figure 7: Cumulative explained variance of the first principal components, when POD is
applied to the nodal position coordinates.

components:

αc
m = xc ·ψm. (3)

3.2. Validation of the POD method

In order to validate the application of Proper Orthogonal Decomposition to

the deformed capsule shapes, the first point to look at is Mmax, the number of225

principal components ψ having a non-zero variance. We find that, when the

nodal position coordinates are used as design variables, the application of POD

to the data set C returns Mmax = 94. This is consistent with the fact that the

number of capsule shapes is Nc = 95.

One also sees that the capsule shape, that was originally represented as 2 562230

points in the three-dimensional coordinate system, and thus by Nx = 3n = 7 695

design variables, can now be interpreted as a single point in an 94-dimensional

space. This indicates that, by keeping the most relevant principal components

only, the POD technique indeed allows to create a reduced basis and therefore

reduce the dimensionality of the problem.235

The second point to consider is the evolution of the cumulative explained

variance with the number of principal components (or modes) M used in Eq.

1, in order to measure the relevance of the first singular values of X. Fig. 7

shows the cumulative explained variance, expressed as a percentage, for the first

five principal components. It shows that only the first two principal components240

majoritarily contribute to the variance, as they together account for about 97.3%

of the total variance of the data set. This is consistent with the physics of the

problem, as we know that the steady-state deformation of a capsule in a tube

only depends on two independent variables: the capillary number Ca and the

confinement ratio a/`. The POD thus retrieves the intrinsic dimension of the245

problem.
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(a) (b) (c)

(d) (e) (f)

Figure 8: Contours in the x = 0 plane of the reconstructed capsules (dashed bold lines)
superimposed to the original capsule provided by the full FSI simulation (continuous lines).
The relative error number εrel decreases with the number of included principal components.
(a) 1 principal component: εrel = 8.8%, (b) 2 principal components: εrel = 2.2% , (c) 3
principal components: εrel = 2.1%, (d) 4 principal components: εrel = 1.3%, (e) 5 principal
components: εrel = 1.0%, (f) 10 principal components: εrel = 0.4%.

In order to further validate the application of POD on the 3D Lagrangian

nodal position vector set and to show the implication that the cumulative ex-

plained variance (Fig. 7) has on the capsule shape, we propose to determine

the error made when projecting a capsule of the data set C on a reduced basis250

and to show how it is influenced by the number of modes M included in the

reduced basis. We reconstruct the capsule contours using Eq. 1 for increas-

ing values of (M)M=1:Mmax
and compare the contours with the corresponding

capsule deformed shape provided by the full FSI numerical simulation. Fig. 8

shows an example of comparison in the case Ca = 0.12 and a/` = 0.95, when255

the reconstructed contours are calculated including up to the first 10 modes.

Qualitatively, one can see that, a very small number of modes is sufficient to

guarantee a high-fidelity prediction of the capsule deformation. In such a case of

very large capsule deformation, 3 modes are sufficient to reconstruct the capsule

deformed shape with good accuracy and a quasi-perfect fit is reached when 10260

modes are used.

To conduct a quantitative comparison and estimate the error made in pre-

dicting the capsule contour, we finally resort to the Hausdorff distances, which

are object matching algorithms that evaluate the similarity between two con-

tours composed of a set of points. We propose, in particular, to use the mod-265

ified Hausdorff distance (Dubuisson and Jain, 1994), which is the average of
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Figure 9: Effect of the number of selected principal components on the error of the recon-
structed capsule. The relative error is computed for 1, 2, 3, 4, 5, 6, 10, 25, 50 and 94 principal
components, represented by the dots.

the projected distances between the corresponding points of the two profiles,

rather than the ‘original’ Hausdorff distance (Huttenlocher et al., 1993), which

is the maximum value of all the projected distances. The modified Hausdorff

distance is indeed more adequate to estimate the overall accuracy of the POD-270

reconstructed capsule profile. We shall call as relative error εrel the value of the

modified Hausdorff distance normalized by the capsule initial radius a, and ex-

press it as a percentage. The values of εrel provided in the legend of Fig. 8 show

that the accuracy increases with the number of included principal components,

and that, even in the case of very large capsule deformation, the accuracy of275

the prediction is below 2.2% when only 2 modes are used in the POD reduced

basis. Fig. 9 illustrates how the relative error εrel monotonically decreases with

the number of principal components M for the same case as in Fig. 8, i. e.

Ca = 0.12, a/` = 0.95. It confirms that five modes are sufficient to set the

relative error below 1%, which is a very small number of modes.280

4. Precision of POD on 3D Lagrangian data fields to predict capsule

deformed shapes for parameter values not present in the database

4.1. Manifold for capsule shape predictions

Meng et al. (2016) have shown that it is improper to do direct interpola-

tion between neighboring shapes using conventional shape morphing techniques285

(Duvigneau, 2006). In other words, the shape obtained by averaging two ex-

isting shapes has no reason to coincide with the shape computed for the mean

value of their corresponding parameter values. One of the main reasons is that

these morphing techniques cannot guarantee the admissibility of the predicted
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Figure 10: Representation of the coefficients (α1, α2, α3) of all the capsule shapes contained in
C (black dots). They lie on a manifold that connects all the admissible shapes. The manifold
is the dome-like grey-colored 2D surface. It has a dimension of two, which is the intrinsic
dimension of the problem.

shapes. To be admissible, the shape must indeed satisfy the constraints of the290

problem. In the case of the steady-state capsule shapes, the physical constraints

are that a unique capsule deformed profile corresponds to each set of values of

the parameters Ca and a/`.

It is generally accepted that all the admissible shapes of a given problem lie

on a smooth manifold, which is a hypersurface in the α-space (Meng et al., 2016;295

Raghavan et al., 2013a,b). The manifold is thus generated by projecting the

database of shapes onto the POD basis: the capsule shape, originally represented

as 2 562 nodes in the three-dimensional coordinate system, becomes a single

point in the 94-dimensional α-space. Interestingly, the number of dimensions

of the manifold is equal to the intrinsic dimension of the problem. Since our300

problem is governed by two parameters, we know in advance that the manifold

associated with our database is a 2D-surface. It is represented in Fig. 10 when

POD is applied to the database of Lagrangian nodal position vectors: only

the points lying on this manifold correspond to admissible capsule shapes. We

now propose to use the manifold to determine the admissible capsule deformed305

shape that corresponds to a set of parameter values that are not present in the

database. This allows to verify whether we have the capability of predicting

capsule deformations using POD.

4.2. Manifold-based methods of prediction

We use manifold walking schemes (Raghavan et al., 2013a) to predict cap-310

sule shapes for parameter values θ′ not included in the database. The technique

consists in remaining on the manifold (Fig. 10) when inferring a shape from a

14



1 Linear piecewise interpolation.
2 Cubic spline interpolation.
3 1st-order polynomial regression.
4 2nd-order polynomial regression.
5 3rd-order polynomial regression.
6 4th-order polynomial regression.
7 5th-order polynomial regression.
8 2nd-order diffuse approximation. 12-point adaptive region, A1/A2 = 0.4.

Table 1: Summary of the manifold-based prediction approaches presently considered.

set of known admissible shapes and finding the α′-coefficients that best approx-

imate it. We will test different manifold-based prediction approaches to find the

α′-coefficients: surface interpolation (piecewise linear and bicubic spline interpo-315

lation), polynomial regression (of first to fifth order), and diffuse approximation.

The objective is to find the one that will be the most adequate and the most

precise to predict steady-state capsule shapes. All the mathematical details on

the manifold walking schemes may be found in the Appendix.

4.3. Evaluation of the accuracy of the manifold-based predictions320

In order to evaluate the capability of prediction of the manifold-based tech-

niques and measure the precision of the predicted profiles, we propose to sequen-

tially remove one data set from P and determine the capsule shape predicted

for the parameter values corresponding to it (they become the components of

θ′). The relative error εrel is calculated by comparing the predicted contour325

to the removed capsule shape (originally computed with the full FSI numerical

model). This procedure is repeated for all the points of the database and for the

different manifold-based techniques using the conditions indicated in Table 1.

The results are presented as heat maps, which allow to visualize how the relative

error evolves with the location in the parameter space and thus provide a com-330

plete overview of the accuracy of each technique. All the principal components

provided by the POD are considered in the prediction of the shapes.

Representative heat maps of the relative error εrel are shown in Fig. 11 for 4

of the manifold-based prediction approaches: linear piecewise and cubic spline

interpolations, 5th-order polynomial regression, and 2nd-order diffuse approxi-335

mation. The darker the color tone, the greater the error. But one must stress

that the error never exceeds the value of 2% in all cases: it directly proves that

all these manifold-walking techniques are capable to predict a capsule shape
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Θ′ for parameter values not in P and that the accuracy of all these prediction

techniques is very high.340

Let us analyze more precisely how the prediction accuracy evolves within the

parametric space. From a general and qualitative point of view, the heat maps of

all the prediction approaches share common characteristics: (i) the predictions

are the most precise in the central region of the parametric space; (ii) slightly

less accurate estimations are obtained in the low capillary number region; (iii)345

predictions are more difficult in the region adjacent to the diagonal border. We

propose to focus on the case of the cubic spline interpolation to further detail

these 3 main comments. Fig. 11b clearly shows that the prediction error is the

lowest in the central region of P, where εrel is below 0.15% (even below 0.05%

at some points), which means that the estimated and reference capsules are350

virtually indistinguishable from each other. This is illustrated in Fig. 12a, in

which the 2 profiles are represented for the parameter set Ca = 0.08, a/` = 0.85.

Capsules with low values of Ca are also well predicted, although εrel increases

slightly, ranging from 0.1% to 0.5%. The slightly higher error value is due to

the fact that, in that region, the concavity of the rear part of the capsules may355

change from one value to another, making predictions complex. An example is

shown in Fig. 12b, in which the predicted profile has a small concavity whereas

the actual data still has a convex rear shape. The largest inaccuracies are found

in certain regions adjacent to the diagonal, where εrel just exceeds 1% (and even

1.5% at some points). This is linked to the fact that, close to the diagonal, fewer360

nearby points are available. The density in data points within the database has

been adapted based on the observation of the error distribution. If the database

has to cover the entire range of desired parameter values, the data point density

also has to be increased in the regions where the capsule shape changes more

abruptly with the parameters, as it is the case for the regions of low Ca and close365

to the dashed line. It is remarkable that, despite these border effects, the error

never exceeds 2% and Fig. 12c shows that, even in these cases, the two profiles

nicely fit with one another. One can thus conclude, that in spite of slight local

imprecisions, the prediction of capsule deformation remains excellent within the

entire parameter space.370

The mean value of the relative error ε̄rel over the entire parametric space has

been computed in each case of Table 1, in order to have a quantitative measure

to compare the different prediction approaches. It is provided, together with the

respective standard deviations, in Fig. 13, which shows that 3 of the 4 techniques

depicted in Fig. 11 sensibly have an equivalent high precision. Indeed, the mean375
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(a) (b)

(c) (d)

Figure 11: Heat maps of the relative error εrel of the capsule shape prediction, obtained when
the nodal coordinates are used as design variables. The maps are derived by sequentially
excluding a parameter set from the database P. The error is calculated by comparing the
predicted contour with the removed capsule shape (which was computed with the full FSI
numerical model). (a) Piecewise linear interpolation, (b) cubic spline interpolation, (c) 5th-
order polynomial regression, (d) 2nd-order diffuse approximation. The black dots correspond
to the points, where capsule shape predictions could not be made by the method.
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(a) (b) (c)

Figure 12: Capsule contours in the x = 0 plane predicted using the cubic spline interpolation.
The dashed bold lines represent the predicted capsule contours, while the continuous lines
represent the reference capsule shapes. (a) Ca = 0.08, a/` = 0.85, εrel = 0.09%, (b) Ca =
0.01, a/` = 0.95, εrel = 0.43%, (c) Ca = 0.18, a/` = 0.75, εrel = 1.69%.

relative error is ε̄rel = 0.32% for the cubic spline interpolation, 0.33% for the

2nd-order diffuse approximation is used, and 0.36% for the linear interpolation.

The mean errors are, however, slightly higher for all the polynomial regression

techniques regardless of the order of the regression. Fig. 13 shows that the

accuracy increases with the order, but that a 5th-order scheme is necessary to380

get close (ε̄rel = 0.456%) to the precision of the other 3 methods.

We shall now provide additional remarks on the performance of each of the

prediction techniques.

Interpolation approaches. The performance of the linear and cubic spline inter-

polation approaches are broadly analogous, which appears when one compares385

Fig. 11a and Fig. 11b. Examples of comparison of predicted vs computed con-

tours may be found in Fig. 14a for linear interpolation and Fig. 12 for cubic

interpolation: excellent fits are found in all cases. On average, the cubic spline

interpolation presents slightly better results than the linear interpolation, but

it is slightly less accurate when predicting capsule shapes close to the diagonal390

border at high values of Ca. It is noteworthy to make the general remark that

interpolation methods cannot compute values outside the domain, as it has no

extrapolation capabilities. No capsule shapes can thus be predicted close to the

vertices of the parametric domain. This situation occurs for six observations in

the data set, which are displayed as black dots on the heat maps.395

Polynomial regression approaches. We have seen that the precision of the poly-

nomial regression estimations greatly improves as the polynomial order increases

(Fig. 13). It indicates that the first few orders of polynomial regression are not

optimal for manifold-walking predictions (e. g. ε̄rel = 2.7% for the 1st-order).

Still, the results obtained with the 5th-order polynomial regression (Fig. 11c)400
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%

Figure 13: Mean and standard deviation of the 95 values of εrel for the prediction approaches
listed in Table 1. Thin lines represent the results when POD is applied to nodal position
coordinates, and bold lines when it is applied to a level set field.

present nearly uniform values of εrel in the central region, ranging between

0.2% and 0.5%. Higher values can be found along the diagonal boundary of the

parametric domain (with a peak at 2.8% for Ca = 0.2), and also in the area

of low Ca (with some values over 0.9%). An example of poorer capsule shape

prediction is provided in Fig. 14b: it illustrates one common issue of high-order405

polynomial regressions, which is the risk of oscillations.

Diffuse approximation approaches. We have found that the diffuse approxima-

tion approaches provide excellent results as indicated by the heat map (Fig. 11d)

and the example of capsule contour comparison given in Fig. 14c. The precision

of the method is, however, conditioned by the shape of the neighborhood. It410

must be well chosen, so that the neighborhood is adapted to the manifold shape

and contains a sufficient number data set points to ensure precision. Diffuse ap-

proximation performs, in general, better with 2nd-order interpolation functions

than with 1st-order, but the difference is rather marginal. Unlike interpolation

approaches, diffuse approximation allows to predict capsule shapes at the bor-415

ders of the domain. Fig. 11d indicates that the predictions at the locations of

the black dots (Fig. 11a) are actually very pertinent.

19



(a) (b) (c)

Figure 14: Capsule contours in the x = 0 plane. Dashed bold lines represent the pre-
dicted capsule contours, while the continuous lines represent the reference capsule shapes.
(a) Linear interpolation: Ca = 0.08, a/` = 1, εrel = 1.42%. (b) 5th-order polynomial
regression: Ca = 0.2, a/` = 0.75, εrel = 2.81%. (c) 2nd-order diffuse approximation:
Ca = 0.08, a/` = 0.85, εrel = 0.015%.

5. POD of 3D Eulerian data fields

Having established the capability of POD to predict capsule deformation

when applied to Lagrangian data sets, we now investigate if it can equally be420

applied to Eulerian fields. In Lagrangian descriptions, fixed topologies of the

shapes are assumed. The design variables can be any explicit parametrization

of the surface boundaries, which can range from vectors of positions, lengths,

angles or radii of the objects (Meng et al., 2016), to boundary splines, basis

shapes or free-form deformations (Samareh, 1999; Sederberg and Parry, 1986).425

But the capsule datasets are not necessarily Lagrangian: they can also be in the

form of a Eulerian field, whether they are obtained numerically (using purely

Eulerian or meshless numerical schemes) or experimentally (the images being

coded in greyscale). In such Eulerian problems, design variables can still be

determined, but they require the use of implicit strategies. Some examples of430

implicit parametrizations include the use of pixelized or voxelized representa-

tions (Raghavan et al., 2010), phase fields (Bourdin and Chambolle, 2006), or

level sets (Burger, 2003; Burger and Osher, 2005). The issue is that these meth-

ods inherently add errors onto the datasets. In this section, we thus investigate

whether it is possible to directly apply POD on the Eulerian dataset.435

Prior to applying POD, we first generate a scalar field from the Lagrangian

datasets of the nodal position vectors obtained by the boundary element-finite

element numerical method. We calculate the signed distance of all the points in

space to the capsule membrane. After having developed a technique to recon-

struct the 3D capsule contour from the level sets, we will compare the results440

to their Lagrangian counterparts and estimate the precision of POD when it is

applied to 3D Eulerian data fields.
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Figure 15: Representation in the x = 0 plane of the Eulerian field, generated by calculating the
signed distance of the points of the domain to the contour of a capsule (Ca = 0.06, a/` = 1).
The level set was obtained using a grid containing p = 50 176 points.

5.1. Generation of level sets

We resort to level sets to emulate a Eulerian data set CE from the Lagrangian

database C. To do so, we first create a three-dimensional regular grid capable of445

englobing all the capsule deformed contours for the parameters in P. We then

generate a three-dimensional scalar field for each of the capsule deformed shapes,

by measuring the shortest Euclidean distances between the grid points and the

capsule surface centered at the middle of the grid. The distances are signed:

they are positive for the grid points located outside the shape and negative450

for the grid points located inside. The scalar field is stored in the form of a

high-dimensional vector.

The level set grid has to be identical for all the shapes in C so that the new

matrix X is correctly assembled. We choose a grid box that extends from −1.8`

to 1.9` in the z-direction, and from −1.2` to 1.2` in the x- and y-directions.455

This size is enough to contain all the shapes in C with a margin on all sides

(see Fig 15). The grid points are uniformly distributed across the box. Three

grid point densities are tested: 8, 10 and 13 points per unit length `. They,

respectively, correspond to level set boxes of 30× 20× 20 points (i.e. p = 12 000

points), 38×25×25 points (i.e. p = 23 750 points), and 49×32×32 points (i.e.460

p = 50 176 points). One must note that the time required to compute the level

set of a capsule largely increases with the number of grid points.

5.2. Application of POD to CE and reconstruction of the capsule contours

The Eulerian data set CE is composed of the Nc level sets computed for

each of the capsule deformed shape of C. In the Eulerian case, the vector xc of465

the cth capsule is xc =
(
dc1, d

c
2, . . . , d

c
p

)
, where dci is the shortest signed distance
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from the ith grid point to the surface of the cth capsule shape, and p is the total

number of points in the level set.

The POD technique is then applied to CE following exactly the same method

as described in section 3.1. It, similarly, returns Mmax = 94 components with470

non-zero variance. But the difference is that the computed POD reduced bases

are now bases of level sets, and not bases of shapes. In order to compare the

results with the Lagrangian results, there is thus the need to reconstruct the

capsule shapes from the level sets. One must note that applying POD to the

Eulerian data set is computationally much costlier than in the Lagrangian case.475

Not only is the data set much bigger in size (p � 3n), but also an additional

step is needed to reconstruct the capsule shape.

The capsule shapes are reconstructed from the level sets using the Marching

Cubes algorithm (Lorensen and Cline, 1987), with which we generate a polygonal

mesh of the isosurface d = 0, corresponding to the capsule surface. The size480

of the generated mesh is directly related to the density in grid points. The

reconstructed capsule meshes are made of 969 nodes and 1 820 elements for the

grid with p = 12 000 points, of 1 407 nodes and 2 656 elements for the grid

with p = 23 750 points, and of 2 429 nodes and 4 628 elements for the grid with

p = 50 176 points. We have set the latter as the default grid, as it provides a485

mesh that has a similar amount of nodes and elements to the original capsule

mesh, which has 2 562 nodes and 5 120 elements. This will guarantee the validity

of the shape comparison.

Fig. 16 shows the cumulative explained variance for the first five components.

The first two components account for 97.97% of the total variance of the data490

set, which, like in the POD on Lagrangian data, is consistent with the fact that

the manifold is two-dimensional. It is interesting to note that the total variance

of the first two modes is slightly higher than in the Lagrangian case. POD on

Eulerian data appears as efficient, if not more, as POD on Lagrangian data.

5.3. Comparison of POD on Eulerian and Lagrangian data sets495

The capsule shapes predicted by POD of level set data are compared, one by

one, to the removed capsule shape, which was computed with the full FSI nu-

merical model. As in the previous sections, we used all the principal components

provided by POD to predict the shapes. The heat maps of the relative error εrel

are shown in Fig. 17 for the same 4 manifold-based prediction approaches as in500

Fig. 11: linear piecewise and cubic spline interpolations, 5th-order polynomial

regression, and 2nd-order diffuse approximation. The same color scales are used
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Figure 16: Cumulative explained variance of the first principal components, when POD is
applied to the Eulerian level sets.

as previously to facilitate the comparison. The mean values of the relative error

are provided in Fig. 13 for the different approaches listed in Table 1.

In general, the maps of the relative error obtained with Eulerian data sets505

(Fig. 17) are very similar to those obtained with Lagrangian data sets (Fig. 11).

The predictions are the most accurate in the central region of the parametric

domain, higher values of error being obtained for low values of Ca or param-

eter values close to the diagonal. The fact that the grey tones are globally

more intense indicates that the predictions are generally less precise than in510

the Lagrangian case. But the error still hardly exceeds the value of 2%, which

validates the concept of manifold-walking using Eulerian data to predict a cap-

sule shape. The mean values of the relative error confirm that the results are

slightly less precise than in the Lagrangian case. One can, for instance, note

that ε̄rel = 0.49% for the 2nd-order diffuse approximation, and 0.51% for the515

cubic spline interpolation, which indicates that the difference is not major.

6. Discussion on the influence of the number of principal components

In the previous sections, we have always used all the principal components

provided by the POD to predict capsule shapes. We now propose to analyze the

effects that the number of principal components has on the precision of the pre-520

diction and on the computational time. We will test different sum truncations,

varying the value of M in Eq. 1.

We have computed the relative error, when removing the capsule shapes of

the database one by one, and reconstructing them using 1, 2, 3, 4, 5, 6, 10, 25,

50 or all the 93 principal components. The evolution of the mean relative error525

with the number of modes is shown in Fig. 18 for the cubic spline interpolation,

which is representative of the results obtained in all the cases. We retrieve the
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(a) (b)

(c) (d)

Figure 17: Heat maps of the relative error εrel of the capsule shape prediction, obtained when
the level sets are used as design variables. The maps are derived by sequentially excluding
a parameter set from the database P. The error is calculated by comparing the contour,
reconstructed from the predicted level set, to the removed capsule shape (which was com-
puted with the full FSI numerical model). (a) Piecewise linear interpolation, (b) cubic spline
interpolation, (c) 5th-order polynomial regression, (d) 2nd-order diffuse approximation. The
black dots correspond to the points, where capsule shape predictions could not be made by
the method.
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Figure 18: Evolution of ε̄rel with the number of principal components in the case of cubic
spline interpolation.

fact that the predictions errors for the level sets are slightly higher than for

the nodal coordinate vectors. All the prediction techniques have values of ε̄rel

above 4%, when only one principal component is used in the prediction. The530

mean error decreases drastically with the number of principal components, until

a plateau is reached from 10 principal components onwards. These results show

that a very small number of modes is sufficient to provide very accurate results.

The errors are below 1% when only 4 or 5 modes are used and, above 10, adding

modes hardly increases the precision. This is due to the fact that almost all the535

information is contained in the very first few modes.

In order to determine the corresponding computational times needed to es-

timate the capsule shapes, we have run each of the computations 100 times,

varying the number of principal components from 1 to 93 systematically. Nat-

urally, the computation time depends to a large extent on how the prediction540

algorithms are programmed and on the characteristics of the computer on which

they are run. The present algorithms have been written in Matlab, using the

built-in function fit for interpolation and polynomial regression, and ad hoc

functions for the diffuse approximation. Algorithms have been run on a desk-

top computer with an Intel Core i7 processor at 3.40 GHz and 16 GB of RAM545

memory.

Examples of the average values of the computational times are shown in

Fig. 19, along with the standard deviation, for the cubic spline interpolation

and 2nd-order diffuse approximation. The time required by the prediction al-

gorithms to estimate a capsule shape is directly proportional to the number of550

principal components chosen to generate the estimation. For instance, using

cubic spline interpolation, the capsule shapes are predicted in 2.2 seconds using

all the 93 principal components, and in approximately a third of that time us-
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Figure 19: Average computational time required to predict a shape for a given number of
principal components: (a) cubic spline interpolation, (b) 2nd-order diffuse approximation.
The dashed lines correspond to the average value ± the standard deviation.

ing 31 components. As a comparison, the corresponding maximum time using

linear interpolation is 2.0 seconds. All the algorithms based on the generic Mat-555

lab built-in function fit take longer than those using ad hoc functions. When

using the complete set of principal components, the predictions are obtained in

2–2.5 seconds with the built-in function (Fig. 19a), vs only 6.5–9 ms for the ad

hoc function (Fig. 19b). As a comparison, the full FSI simulations take about

48 hours to run on the same computer. The POD technique thus represents a560

gain in time of 8 639 900% for the 2-second long estimates, and 2 159 999 900%

for the 8-millisecond estimates.

7. Conclusion

In this work, we have implemented, for the first time, POD-based dimen-

sionality reduction techniques to predict the deformation that a capsule has at565

steady state when flowing through a straight microfluidic channel. They allow

to predict the capsule shape for any arbitrary value of the two input parameters

of the problem: the capillary number Ca and the capsule-to-channel size ratio

a/`. We have shown that manifold-walking techniques provide very accurate

predictions of the capsule shape, especially when interpolation and 2nd-order570

diffuse approximation approaches are used to ‘walk’ on the hypersurface. Fur-

thermore, one of the most outstanding features of these prediction techniques is

the very small computational time. Results are obtained in just a couple of sec-

onds, which sharply contrasts with the days required by the full Fluid-Structure

Interaction numerical method.575
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The accuracy of the predictions is altogether excellent with mean values

much below 1%. It is, however, not uniform for all the values of Ca and a/`.

Very high levels of precision are reached in the center region of the parametric

domain. Near the domain borders, the predictions lose a little accuracy, because

of the absence of information outside the domain. This occurs near the diagonal580

described in §2.3, beyond which no steady-state capsule shape exists for the

neo-Hookean constitutive law. Strain-hardening laws, such as the law by Skalak

et al. (1973), do not have this inherent limitation, since a steady-state capsule

conformation exists for any value of the input parameters. The same bordering

phenomenon occurs in the low capillary number region (Ca < 0.04), which adds585

the fact that the concavity of the rear part of the capsule may change suddenly

with a small increment in Ca. It is, indeed, in this range of capillary numbers

that the capsule transits from a slug-shape to a parachute-shape. This increases

the difficulty of shape prediction, but this inherent weakness can be mitigated

by increasing the density of pre-calculated forms in this region of the database.590

We have also verified that POD-based prediction approaches can be ap-

plied to Lagrangian data (e. g. capsule nodal position vectors computed from

numerical methods), as well as to Eulerian scalar fields (e. g. greyscale imag-

ing data obtained from experiments). To emulate a Eulerian framework from

our database, we have transformed the capsule shapes into scalar fields using595

level sets. The prediction results obtained on the level sets are approximately

as accurate as the Lagrangian results. The slight difference in accuracy may

be due to the fact that we had to go through a shape reconstruction step in

order to estimate the accuracy. One can foresee that extremely high levels of

accuracy would be kept (possibly higher than for Lagrangian data as suggested600

by Fig. 16), if the predicted level set fields are directly post-processed without

conversion step.

The present method could be generalized to microcapsules flowing in chan-

nels that lead to non-steady-state solutions (e.g. microchannel with a sudden

change in diameter like in Gires et al. (2016)). Besides obtaining the shape of605

the capsules at steady state, their shape can indeed also be computed at any

particular value of the non-dimensional time Ut/l. The deformation can then be

obtained for any value of the parameters Ca and a/l like in the present study.

By using this approach and calculating the capsule shape at various instances,

, one can see that it is possible to determine whether the obtained shape corre-610

sponds to a transient state or the steady state just by comparing the resulting

shapes.
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The advantage of POD over methods based on spherical harmonics or Fourier

transforms is that it uses a base of dedicated functions rather than a universal

function base. With POD, we indeed do the decomposition on a base that615

we build a posteriori, while the other methods use a decomposition on an a

priori base. This results in much shorter series development and thus a reduced

number of significant coefficients/modes (less than 10). The price to pay is the

need to have existing results of the full simulation.

Once determined, the POD decomposition could then also be used to reduce620

the fluid and/or solid solvers, which will greatly reduce the computational time

as we only need to account for less than 10 modes. Simulations in reduced

bases was not the objective of the study, but one must stress that they are one

application of the POD decomposition. Their prediction capability will be good

in the case of parabolic problems (i.e. purely diffusive phenomena) but quite625

poor in the case of hyperbolic problems (i.e. transport phenomena).

In conclusion, the successful application of model-order reduction techniques

to the prediction of capsule deformation paves the way for a new generation of

faster and more efficient numerical methods in the field of microfluidics. We

have seen that such techniques can be used for many applications, such as630

identification of mechanical properties, as they would drastically reduce the

cost of the inverse analysis procedures.

Appendix

Different approaches have been tested to walk on the manifold when predict-

ing the α′-coefficients: surface interpolation, polynomial regression, and diffuse635

approximation.

Surface interpolation. Interpolation is one possible method to build a contin-

uous surface Sm (θ) for each principal component m: it is obtained such that,

∀c, Sm (θc) = αc
m. The coefficients α′m, corresponding to any new parameter

set θ′, are then given by: α′m = Sm (θ′). We have considered both piecewise640

bilinear interpolation and bicubic spline interpolation in order to evaluate the

influence of the order of the interpolation technique.

For the piecewise linear interpolation, the surfaces Sm are approximated with

a series of piecewise-defined planes. They thus have discontinuous first deriva-

tives. The sub-domain of each plane is determined by applying the Delaunay645

triangulation algorithm to the set P of θ points in the parametric space (Fig. 5).

28



(a) (b)

Figure 20: Surfaces S1 (a) and S2 (b) computed using piecewise linear interpolation. Note
that the surfaces pass through all the points θ.

Let the point of interest θ′ be located inside the triangular sub-domain delimited

by the points θi, θj , θk ∈ P. The approximated value of α′m is then obtained by

finding the equation of the plane passing through the three points
(
θi1, θ

i
2, α

i
m

)
,(

θj1, θ
j
2, α

j
m

)
, and

(
θk1 , θ

k
2 , α

k
m

)
and evaluating the αm value at (θ′1, θ

′
2). The sur-650

faces S1 and S2, computed for the set P, are shown in Fig. 20 as an illustration.

By contrast, the bicubic spline interpolation guarantees the continuity of

the first derivatives and the cross-derivative of Sm: the surfaces are smoother,

which is at the expense of a more complex algorithm. Within each sub-domain,

the piecewise-defined surfaces are now computed using a third-order bivariate655

polynomial function with sixteen unknown coefficients, which are determined by

particularizing the polynomial function and its derivatives with the values known

at the neighboring points θ ∈ P. More details on bicubic spline interpolation

may be found in Boor (1962).

Polynomial regression. Another method to obtain continuous surfaces Sm (θ)

for each principal component m is to use polynomial regression techniques, and

express the αc
m coefficients as an nth degree polynomial of the variables θ1 and

θ2. We have tested polynomial functions up to the fifth order to estimate the

29



(a) (b)

Figure 21: Examples of S2 surfaces, computed using 2nd-order (a) and 5th-order (b) polyno-
mial regression. Note that the surfaces do not pass through all the points θ. This is more
visible for the 2nd-order than the 5th-order regression.

surfaces:

S1m (θ1, θ2) = β00 + β10θ1 + β01θ2,

S2m (θ1, θ2) = S1m + β20θ1
2 + β11θ1θ2 + β02θ2

2,

S3m (θ1, θ2) = S2m + β30θ1
3 + β21θ1

2θ2 + β12θ1θ2
2 + β03θ2

3,

S4m (θ1, θ2) = S3m + β40θ1
4 + β31θ1

3θ2 + β22θ1
2θ2

2 + β13θ1θ2
3 + β04θ2

4,

S5m (θ1, θ2) = S4m + β50θ1
5 + β41θ1

4θ2 + β32θ1
3θ2

2 + β23θ1
2θ2

3 + β14θ1θ2
4 + β05θ2

5,

where βij are the polynomial coefficients, which are estimated using an ordinary660

least square method (Brandt, 1999). A major difference with interpolation

techniques is that the condition Sm (θc) = αc
m is not presently enforced: the

generated surface does not necessarily pass through all α-coefficients. This is

illustrated in Fig. 21, which shows the shapes of the S2 surface computed with

different orders of polynomial regression.665

Diffuse approximation. The third approach, diffuse approximation (Nayroles

et al., 1992), accurately maps any point θ′ in the parametric space to its

corresponding point α′ on the manifold. To do so, the method uses a local

weighted least squares fitting, that is valid in a small neighborhood centered on

θ′ (Fig. 22a). Within this domain, the α′-coefficients can be locally approxi-

mated by

α′m (θ′) ≈ p (θ′)
T
am,
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where p is a vector of independent functions, that are generally polynomials,

and am is the vector containing the approximation coefficients (constant for

each principal component m). For first-order functions,

α′m (θ′) ≈ am0 + θ′1 a
m
1 + θ′2 a

m
2 ,

while for second-order functions,

α′m (θ′) ≈ am0 + θ′1 a
m
1 + θ′2 a

m
2 + θ′1

2
am3 + θ′1 θ

′
2 a

m
4 + θ′2

2
am5 .

Given the distribution of the capsule shapes in the parametric space (Fig. 5),

we have chosen to use ellipsoidal neighborhoods of major axis A1 in the θ1 = Ca

direction and minor axis A2 in the θ2 = a/` direction (Fig. 22a). We have

tested whether it was better to define the neighborhood using a criterion of size

(providing values of A1 and A1/A2) or using a criterion on the number of points670

of P included within the neighborhood. We have found that the best results are

obtained when the neighborhoods have a variable size, keeping a constant size

ratio A1/A2 = 0.4, that is adapted to contain 12 points regardless their position

in P.

The contribution made by the points θ of the set P in the approximation of

α′m is weighted by their distance d to θ′. The normalized weight function

w(d) =

{
2d3 − 3d2 + 1, if d ≤ 1

0, otherwise
,

is plotted in Fig. 22b. The distance d is normalized to have a value of d = 1 at675

the boundary of the neighborhood. The neighborhood must, at least, include as

many θ points as the number of ami coefficients, so that the system of equations

is not over-determined.

The diffuse approximation finally uses a least squares method to determine

the vector of coefficients am, which are then given by:

am =
(
PTWP

)−1
PTWαm,

where P is a matrix consisting of the Nc column vectors p (θc), W is a diagonal

matrix of order Nc with the weights and αm is a column vector containing the680

known values of the Nc coefficients αc
m.

31



(a) (b)

Figure 22: Elliptical neighborhood and weight function used in the diffuse approximation
technique. (a) Close-up on an elliptical neighborhood with A1 = 0.061 and A2 = 2A1

(dashed line), defined around the point θ′ = (Ca = 0.04, a/` = 1) in the parametric space
P. The neighborhood includes 10 capsule shapes (black dots). (b) Weight function w as a
function of the distance d of the points of P to θ′.
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