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Abstract

This article addresses the problem of constrained derivative-free optimization in a
multi-fidelity (or variable-complexity) framework using Bayesian optimization
techniques. It is assumed that the objective and constraints involved in the
optimization problem can be evaluated using either an accurate but time-consuming
computer program or a fast lower-fidelity one. In this setting, the aim is to solve the
optimization problem using as few calls to the high-fidelity program as possible. To this
end, it is proposed to use Gaussian process models with trend functions built from the
projection of low-fidelity solutions on a reduced-order basis synthesized from scarce
high-fidelity snapshots. A study on the ability of such models to accurately represent
the objective and the constraints and a comparison of two improvement-based infill
strategies are performed on a representative benchmark test case.

Keywords: Multi-fidelity, Variable complexity, Black-box optimization, Non-intrusive
reduced basis, Bayesian optimization

Introduction
Several computation techniques with varying fidelity1 have been developed over the past
decades for the simulation of fluid dynamics. Figure 1 illustrates the trade-off between
duration and accuracy for some of these techniques. High-Fidelity (HF) simulation tech-
niques such as 3D-RANS and LES have reached a maturity that allows them to be predic-
tive enough to be usedwithin aeronautical parts design optimization loops [39]. However,
these imply extensive computer resources utilization ranging from hours to full days of
computation on supercomputer architectures and the generation of several gigabytes of
data. On the other hand, Low-Fidelity (LF) such as 2D-Euler, 1D models, categoriza-
tion [20,37], mesh reduction [5,27] or relaxing convergence criteria [16], can be used to
compute coarse fluid flow approximations using limited resources and time.
This work addresses the problem of constrained derivative-free optimization with mul-

tiple fidelity sources. In the single-fidelity Surrogate-Based Optimization (SBO) frame-

1The term fidelity refers here to both the time of a calculation and its accuracy [20].
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Fig. 1 Illustration of the trade-off between duration and accuracy for different computational fluid
dynamics (CFD) techniques

work, cheap to evaluate approximation models of the objective and constraints are used
alongside an infill criterion to build a sequential Design of Experiments (DoE) optimiza-
tion strategy. Multi-Fidelity (MF) approaches extend this framework by leveraging both
low and high-fidelity simulators. Some approaches enhance LF simulations using additive
[42], multiplicative [2] or hybrid [50] corrections or space mapping [29], learned fromHF
simulations. Other approaches, such as co-kriging [21,28] or co-RBF [18], exploit the cor-
relation between the different fidelity levels to produce a MF surrogate model. Another
approach is to use hierarchical Kriging [49] to build surrogate models recursively at each
fidelity level.
The efficiency of MF models depends on the compromise between the cost and accu-

racy of the responses. The general concept of MF infill strategies consists in establishing
low-cost enrichment criteria of LF models to predict new HF sample’s most promising
locations [30,47]. Hierarchical methods identify promising points before evaluating them
with the HF model [13,17] within an optimization. Those methods can also be used with
a Genetic Algorithm [45]. Other articles proposed to use trust-region methods to man-
age the infill criteria, both in the gradient-based [1] and the derivative-free frameworks
[33,34]. Albeit promising, those methods are likely to remain local. Recently, attention
has been turned toward the Surrogate-Based-Optimization framework: approaches in the
literature [30] are based either on the prediction error [27] or statistical criteria [25,31].
In this article, we adopt the Bayesian optimization approach to select promising loca-

tions for HF evaluations. Themain idea is to choose a priormodel for expensive quantities
of interest to optimize. The evaluation points are selected sequentially to obtain a small
average error between the approximation and the optimal point under the selected prior,
see e.g., Kushner, Zilinskas, andMockus [51] for additional references in the field. Regard-
ing single-objective bound-constrained optimization, the Expected Improvement (EI) was
popularised by Jones et al. [25] in the Efficient Global Optimization (EGO) framework.
Later, the EI criterion has been extended to handle constraints and to address multi-
objective problems.2 Picheny et al. [38] compared existing infill criteria such as EI, Aug-

2See, e.g., Section 2 of [19].
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mented EI used by Huang et al. [22], and the Weighted Integrated Mean Square Error
(Weighted IMSE) criterion for noisy optimization benchmark. The weighted EI extension
is proposed by Sobester et al. [48] in order to control the balance between exploitation and
exploration in a constrained optimization framework. In [44] the EGO was generalized
for multidimensional variables in the noisy Gaussian process and gradient-knowledge
framework. With similar noise assumptions, Kandasamy et al. [26] used the Thompson
sampling criterion to consider the variability of the evaluation time when maximizing
an unknown function from noisy evaluation in a parallel computing framework. A multi-
fidelity extension of the EI criterion to the sequential Krigingwas proposed byHuang et al.
[23,24]. This criterion allows for adding the cheapest best current LF sample. In our case,
the sampling is focusing on the HF level. For the additional references, see [46], where
Bayesian techniques are reviewed for applications such as constraint, single-fidelity, and
multiple fidelity optimization.
Vectorial surrogate models can be used to account for features of interest that are

difficult to represent with scalar models, such as discontinuities or shocks, which are typ-
ically encountered in aerodynamic simulations. The parametrization of full-field models
is often used with a reduced-order model and relies on a separation between space vari-
ables and design variables. Methods such as Principal Component Analysis (PCA), Proper
Orthogonal Decomposition (POD) [32], developed in the field of turbulence [8], Reduced
Basis Methods (RBM) [3,43] or Proper Generalized Decomposition (PGD) [12] can be
employed to this end. The benefits of using such an approach in surrogate-based opti-
mization are shown in [15]. The presentwork aims at predicting the system response based
on a limited number of prior HF evaluations and the LF vector responses. To this end,
the Non-Intrusive Reduced Basis (NIRB) [11] methodology is extended to a multi-fidelity
optimization context called Multi-Fidelity Non-Intrusive Reduced Basis (MFNIRB) with
a correction method within the Bayesian optimization framework.
The paper begins with an overview of the surrogate model used in the proposed enrich-

ment strategy. The reduced basis methodology needed to represent the bi-level fidelity
vector responses is also introduced. Then, the proposed infill strategy is detailed. Finally,
a bi-fidelity level benchmark derived from aerodynamic simulation [7] illustrates the pro-
posed approach.

Method
Multi-fidelity model

Given a design spaceD of dimensiond and a physical domain� ⊂ R
{2, 3}, the optimization

problem considered in this work is to find values ϑ� ∈ D of the design variables ϑ

that minimize some scalar objective function J (f (x,ϑ)) while respecting nc real-valued
constraint functions (ch)1≤h≤nc .

minimize
ϑ∈D⊂Rd

J (f (x,ϑ)),

s.t. ch(f (x,ϑ)) ≤ 0, h = {1, ..., nc},
(1)

where the objective function J and the constraint functions (ch)1≤h≤nc are evaluated by
running computer simulations yielding a vector f (x,ϑ) of values at a fixed set x = (xi)1≤i≤n
of n discrete positions in the physical domain �.
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Given a design of M experiments {ϑ(1), . . . ,ϑ(M)} ∈ DM , according to the Model Order
Reduction paradigm [3,9], a separated representation of f (x,ϑ) can be formulated as

f (x,ϑ) ≈
m∑

k=1
ϕk (x)αk (ϑ), x ∈ �, ϑ ∈ D, (2)

where the basis vectors ϕk are the left singular vectors, corresponding to m ≤ M << n
non-zero singular values of the so-called snapshot matrix

S = [f (x,ϑ(1)) ... f (x,ϑ(M))]. (3)

The basis vectors ϕk depend on the discretization of the physical domain and only the
coefficients αk depend on the design variables ϑ. Note that since only a low number of HF
snapshots is assumed available, we are skipping the usual truncation phase. However, the
number m of basis vectors is not strictly equal to M due to the possible presence of null
singular values.
Rather than expressing αk (ϑ) explicitly using surrogate modeling techniques [15] or by

solving a Galerkin-projected problem [14], the proposed multi-fidelity approach relies on
the assumption that a LF solution f LF (x,ϑ) is available at a significantly lower computa-
tional effort than the HF solution f (x,ϑ). The multi-fidelity approximations αMF

k of the
coefficients αk can then be obtained by projecting f LF (x,ϑ) on ϕk [10]:

αMF
k (ϑ) = ϕT

k (x)f LF (x,ϑ), x ∈ �. (4)

A multi-fidelity approximation model f MF (x,ϑ) of f (x,ϑ) can thus be formulated as

f MF (x,ϑ) =
m∑

k=1
ϕk (x)αMF

k (ϑ),ϑ ∈ D. (5)

Note, that this formulation does not necessarily interpolate the data, namely

f MF (x,ϑ(i)) �= f (x,ϑ(i)), 1 ≤ i ≤ M, x ∈ �, (6)

and, as a consequence, the interpolation errors,
⎧
⎨

⎩
�J

(
ϑ(i)

)
= J

(
f (x,ϑ(i))

)
− J

(
f MF (x,ϑ(i))

)
,

�ch

(
ϑ(i)

)
= ch

(
f (x,ϑ(i))

)
− ch

(
f MF (x,ϑ(i))

)
, 1 ≤ h ≤ nc

(7)

are non-null.
In this work, it is assumed that the approximation f MF is unbiaised and the correction

terms �J (ϑ) and �ch (ϑ) are modeled using Gaussian processes with zero mean and
parametrized covariance kernels kθ

�(ϑ) ∼ GP(0, kθ(ϑ,ϑ)), ϑ ∈ D.

Conditional on the observations, the GP posterior distribution [41] at a new sampling
point ϑ is a random variable with a normal distribution characterized by its mean

�M(ϑ) = kTθ (ϑ) · Kθ
−1 ·

[
�(ϑ(1)), . . . , �(ϑ(M))

]T
,

and its variance

σ 2
M(ϑ) = kθ(ϑ,ϑ) − kθ

T · Kθ
−1 · kθ ,

with Kθ theM × M covariance matrix between theM sample points

Kθ,ij = kθ(ϑ(i),ϑ(j)), 1 ≤ i, j ≤ M,
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and kθ the vector of covariates between theM sample points and ϑ, defined by

kθ(ϑ) =
[
kθ(ϑ,ϑ(1)), . . . , kθ(ϑ,ϑ(M))

]T
.

The approximation of the cost functional for an arbitrary parameter setϑ is thus defined
as

J̃ (ϑ) = J (f MF (x,ϑ)) + �J (ϑ). (8)

In analogous manner, the constraint functions are modeled as :

c̃h(ϑ) = ch(f MF (x,ϑ)) + �ch (ϑ), h = {1, . . . , nc}. (9)

In the following sections, the MF model refers to the MFNIRB model (the corrected
MF prediction). The objective and constraints are expressed respectively by JMF (ϑ) and
cMF
h (ϑ) instead of J (f MF (x,ϑ)) and ch(f MF (x,ϑ)) to simplify the notations.

Improvement-based infill criteria

Assuming that a feasible solution exists in the DoE,3 the current best point can be defined
as

Jbest = min
{J (x,ϑ); ϑ ∈ C}

, (10)

where C = {ϑ ∈ D; ch(ϑ) ≤ 0, 1 ≤ h ≤ nc} denotes the feasible solution set. The
improvement yielded by the observation of a new point ϑ can then be defined as

I(ϑ) = max(Jbest − J̃ (ϑ), 0) · 1ϑ∈C . (11)

Assuming that the constraints involved in the optimization problem are independent,
the probability that a given ϑ ∈ D belongs to the feasible set C can be computed using the
closed-form formula

PF (ϑ) =
nc∏

h=1
P (c̃h(ϑ) ≤ 0) =

nc∏

h=1
�

(
−J̃ch
σch

)
, (12)

where σ 2
ch is the posterior variance associated to constraint ch, 1 ≤ h ≤ nc.

If it is further assumed that theobjective and constraints are independent, theprobability
of improvement can be expressed as

PIc(ϑ) = �

(
Jbest − J̃ (ϑ)

σ (ϑ)

)
· PF (ϑ) . (13)

The EI in the presence of constraints is defined as the expected value of I(ϑ) conditional
on the observations (see, e.g., [4]). Under the same assumptions

EIc(ϑ) = EI(ϑ) × PF (ϑ), (14)

with

EI(ϑ) =
{
max

(Jbest − J̃ (ϑ), 0
)

if σ (ϑ) = 0,
(Jbest − J̃ (ϑ))�

(
Jbest−J̃ (ϑ)

σ (ϑ)

)
+ σ (ϑ)φ

(
Jbest−J̃ (ϑ)

σ (ϑ)

)
if σ (ϑ) > 0,

(15)

where φ(.) and �(.) denote respectively the standard normal probability density function
and the normal cumulative distribution functions, J̃ (ϑ) being the posterior mean of J .

3See, e.g., Section 2.3 of [19] and references therein for a discussion of possible alternatives in the case where no feasible
solution is known.
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Either EIc and PIc can be used as an Infill Criterion (IC) within the optimization loop to
select themost promising infill point.Whereas the PI favors the regions of likely improve-
ment, the EI corresponds to the posterior expectation of the improvement function and
hence achieves a natural trade-off between regions of high improvement and regions of
high variance.
The maximum value of IC determines the new points to be added to the training set,

such as

ϑ∗
new = arg max

ϑ

IC(J̃ (ϑ)), (16)

where IC is an infill criterion using values of the approximate cost function J̃ .
The algorithm 1 summarizes the proposed optimization procedure. After sampling

M snapshots from the HF black-box solver, the orthogonal basis Φ = (ϕk )1≤k≤m can
be obtained with the Singular Value Decomposition (SVD). Thereby, the multi-fidelity
projection coefficients (see Eq. (4)) are evaluated using Φ and M snapshots sampling of
the LF simulation. The multi-fidelity quantities of interest are formulated, then corrected
as in equations (8) and (9) to evaluate the quantities J̃ and c̃h, h = {1, ... , nc}. The IC
uses these quantities to find the next candidate. Since the IC is likely to be multi-modal, a
global optimization algorithm should be used to solve the auxiliary optimization problem
(16).

Numerical results
Problem definition

The optimization benchmark problem [7] is used for the following numerical experiments
minimize J (ϑ)

s.t. ϑ ∈ D, c1(ϑ) ≤ 0, c2(ϑ) ≤ 0,
(17)

where D = [4, 6] × [10, 14] is a bi-dimensional design space and the objective and con-
straints functions are defined by

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

J : ϑ ∈ D 	→ min
xi∈[0, 1]

f (x, ϑ)

c1 : ϑ ∈ D 	→ arg min
xi∈[0, 1]

f (x, ϑ) − 0.75

c2 : ϑ ∈ D 	→ 7.5 − max
xi∈[0, 1]

f (x, ϑ),

(18)
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using either the HF model fHF or the LF model fLF defined as
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

fHF : Rn × D → R

(x, ϑ) 	→ 1
2 (6x − 2)2 sin(ϑ2x − 4) + sin(10 cos(ϑ1x))

fLF : Rn × D → R

(x, ϑ) 	→ 1
2 (6x − 2)2 sin(ϑ2x − 4) + 10(x − 1

2 ).

(19)

These benchmark functions feature two fidelity levels of the full-field model. It has been
generalized to enable a variable Low- to High-fidelity distance

f LF (x,ϑ,α) = αf LF (x,ϑ) + (1 − α)f HF (x,ϑ), (20)

by introducing the parameter α ∈ [0, 1]. We first consider the numerical experiment with
α = 1, then variable values of α are taken into account.
This test problem is illustrated in Fig. 2. The non-feasible regions are delimited by con-

tinuous and discontinuous lines corresponding to the c1 and c2 constraints. The red and
blue lines represent the targetedHF and the LF values. As can be observed on subfigures 1c
and d, the constraint c1 features diagonal discontinuities and a sharp cliff in the region of
high ϑ2 values (Fig. 1c) but none of them are present in the LF model (Fig. 1d). Similarly,
the region of feasibility for the constraint c2 is poorly represented by the LF model (see
subfigures 1e and f). Besides, it features three disconnected feasible regions which make
finding the global optimum a difficult optimization problem. Considering the objective
function J , it can be observed on subfigures 1a and b that the LF model fails to represent
the influence of the ϑ2 variable, which makes it rather deceptive.

Convergence of the multi-fidelity model

In this section 3.2, the optimization problem (18) is used, with α = 1, to illustrate the con-
vergence of the MFmodel proposed in Section towards the HF model with an increasing
number of available HF simulations. The ordinary Kriging (OK) is compared to thismodel
to illustrate the impact and the potential benefit of the MF trend compared to a constant
trend based kriging (trend of the OK). The OK model is generated using the pykriging
library [36] adapted to each experiment in sections 3.2, 3.3 and 3.4.
The constraints ch(ϑ), c̃MF

h (ϑ) (see Eq. (9)) and c̃OKh (ϑ) obtained for Latin Hypercube
designs respectively made of 4, 40 and 400 points are illustrated in Figs. 4 and 5 for h = 1
and h = 2 respectively, the red and black lines represent respectively the constraints limits
of the HF and the approximates values (obtained with the MF and the OK models). The
relative errors between the HF real values and MF models for the objective J and for the
constraints c1 and c2 are given in Table 1 and the snapshots obtained using either theMF,
LF and HF function values are represented on Fig. 3 for the 4 points DoE. For each curve,
the up and down triangles represent respectively the maximum and the minimum values
of the f (x). The vertical line represents the upper-bound of 0.75 on c1 and the horizontal
line represents the lower-bound of 7.5 on c2 (see Eq. (18)).
The LF snapshots minimum values illustrated in Fig. 3 are located in the lower part of

the vertical upper-bound line. The c1 constraint is confirmed to be constant as observed
on Fig. 1d and there are no non-feasible areas for this constraint (see Fig. 1b). The LF
test function is not able to capture c1 features. The multi-fidelity function values are
approaching better the variation of minimum values locations (Fig. 3). Table 1 compares
HF to multi-fidelity and corrected multi-fidelity quantities of interest.
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Fig. 2 Values of the objective function (first row) and of the constraints functions c1 (second row)
and c2 (third row) of HF (left column) and LF (right column)

For both the objective and the constraints, the prediction errors of theMFmodels decrease
as the size of theDoE increases. The features of theHFmodels arewell captured, especially
when the additive correction is applied (see Eq. (8)), with an average relative prediction
error ranging from 0.04% to 0.35% which represents a reduction of 0.48% to 8.12% of the
relative error (see Table 1 and Figs. 4 and 5). The corrected model is performing better
than the LF and the uncorrected multi-fidelity models. The corrected MF model errors
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Table 1 Mean over the design variables ϑ of the “HF-to-MF”models relative error for the
objective and constraints when the number of available HF simulations successively
equals to 4, 40 and 400 points

M ||J−JMF ||
||J ||

||c1−cMF
1 ||

||c1||
||c2−cMF

2 ||
||c2||

||J− ˜J ||
||J ||

||c1−c̃1||||c1||
||c2−c̃2||||c2||

4 6.97% 0.80% 8.10% 8.16% 0.83% 6.59%

40 4.77% 0.59% 7.87 % 4.10% 0.60% 2.34%

400 4.30% 0.61% 4.56 % 0.04% 0.35% 0.11%

The first three columns show the error between the HF model and the MF model without the additive correction. The last
three columns show this error after the additive correction of MF model using Gaussian processes

a DoE b Snapshots, α = 1

Fig. 3 Snapshots obtained for the 4 points DoE when the HF (continuous red curves), LF (dashed blue
curves), and MF (dotted purple curves) models are used with α = 1

for a training set of 400 points are lower than the uncorrected one. Moreover, the increase
of the training set sizes from 40 up to 400 generates a small reduction in the MF trend
model error, which seems to reach an asymptote (0.47% drop of the objective and 0.02%
increase in c1).
In Figs. 4 and 5, the MF model and the MF trend values are compared to an OK model
and values of HF and LF constraints (evaluated by the functions defined by (19)). The
OK model cannot capture discontinuities for a low-size training set (4 training points),
whereas, the corrected model is better capturing the discontinuities even for scarce DoE
size. The MF uncorrected model on Figs. 4 and 5 converges to the LF values, whereas, as
for kriging, the corrected MF is converging to the HF targeted values.
Regarding the constraint c1, for which the LF model is unable to capture the features of
the HFmodel, Fig. 4 shows that the correctedMFmodel can capture both the high values
of the constraint and the diagonal discontinuities. The LF model for constraint c2 is more
informative than the one for constraint c1. Nevertheless, it fails to represent the three
disconnected basins featured by the HF model, whereas Fig. 5 shows that these basins are
recovered by the correction term using only 40 points.

Multi-fidelity convergence for variable Low- to High- fidelity distance

Section illustrates the behavior of theMFmodel and trend in comparison to anOKmodel
for a single run at each DoE level. As the Latin Hypercube Sampling used to generate the
DoE exhibits non-deterministic behavior in successive runs, the present section is devoted
to the statistical behavior over repeated runs.
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Fig. 4 The convergence of the MF trend, MF and OK models of the c1. In c–h, the left, the middle and the
right columns show the values of cMF

1 , c̃MF
1 (see Eq. (9)) and c̃OK1 . The points in the DoE are represented as

white dots
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Fig. 5 The convergence of the MF trend, MF and OK models of c2. In c–h, the left, the middle and the right
columns show the values of cMF

2 , c̃MF
2 (see Eq. (9)) and c̃OK2 . The points in the DoE are represented as white dots
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Fig. 6 Evolution of the relative error for a sample experiment. The black dots are the DoE points and the red
star is the location of the theoretical optimum of the HF model

This study focuses on the local results at the optimal targeted value. The criterion
evaluated is defined at the theoretical optimal point ϑ∗ by

δJ = ||JHF (ϑ∗) − J (ϑ∗)||
||JHF (ϑ∗)|| (21)

where J can be equal to J̃OK or J̃MF .
The objective is to evaluate the capacity of MF models with different HF-LF distances

(variable α, see Eq. (20)) to respond accurately to the optimization problem.
It is advised to use a size of 10 times the number of variables as the initial set of experi-

ments [25], leading to aminimumof 20 points initial set of experiments to obtain sufficient
coverage. The MF model is then evaluated with a 20 initial training set. Results obtained
for two different DoEs of 20 simulations (M=20) are presented in Fig. 6a, b for varying α

values.
At the examples shown in Fig. 6, the MF trend intersects the OK model relative error

between α = 0.2 and α = 0.3, its performances decreasing for higher α values, α ≥ 0.3
(Fig. 6a). MF model outperforms OKmodel for all α values in Fig. 6b while it remains less
interesting for α ≥ 0.4 in the experiment in the Fig. 6a. Figure 6 presents some variability
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Fig. 7 Evolution of the relative error at the theoretical optimal point for multiple runs. The mean error values
are represented by purple continuous and dotted lines for the MF model and its trend, the OK by a red line,
with their corresponding standard deviation (shaded areas) obtained from 40 independant LHS experiments
for each α value. Same LHS DoE is used for model comparison

in theMF performance, therefore, Fig. 7 gives themean and standard deviation for a series
of 40 runs of the three models. In each run, a new LHS DoE is generated, and the results
are computed for increasing values of α.
The average behaviour of theMF trend outperforms the OKmodel up to α ≤ 0.2, while

the average behaviour of the corrected MF model is systematically better for all values of
α, up to the maximum distance α = 1. Given the standard deviation, Fig. 7 shows that the
MF trend is very stable, unlike the OK and MF models. Given this variability, MF seems
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to outperform the OK model up to α = 0.7, and we can consider that the proposed MF
model is more accurate up to α ≈ 0.7.
This study illustrates the impact of the trend on a Krigingmodel.When the α decreases,

the trend error MF is reduced, and consequently, theMFmodel (the corrected trendMF)
is improved. The proposed MF model can be an alternative to classical Kriging (here OK
model) when the available LF data are sufficiently close to the HF data, however, obtained
at a cost comparable to the Kriging model evaluation.

Comparison of infill criteria

The last sections illustrate the behavior of MF in comparison to an OK for different DoE
sizes andmultipleMF configurations by using the parameter α. In the present section, the
value of α is fixed to 1, the highest HF-LF distance case, denoting the original benchmark
problem [6]. Optimization strategies using either the EIc and PIc infill criteria defined in
Section are applied on the test problem of Section . The convergence was tested with high
DoE coverage (up to 400 points). The objective of this section is to improve the model
convergence with a smaller DoE.
Starting fromaLatinHypercubedesignof 20 experiments (which corresponds toM = 10d
as recommended by [25]), either EIc and PIc are performed for the OK and corrected
MF models. The results obtained after 5 iterations using EIc criterion that take into
account the probability of feasibility of the constraints c1 and c2 are reported in Fig. 8.
The cartographies showing the values of each criterion in the last iteration for MF and
OK models are shown in Fig. 8e, f.
The first experiment (Fig. 8), indicates that OK and MF optimums are in the targeted

location for less than 5 infill iterations after a similar initial DoE of 20 training points.
The model OK best point was obtained after only 3 iterations. The infill points are mainly
covering the region of the theoretical exact best point, particulary for the model OK.
The MF infill points are more distanced for iterations 1, 3, and 4 and can be considered
more as an exploratory enrichment. The last maximal value of the MF EIc is located at
the theoretical optimal point. The MF model is better representing the c1 constraint at
the initial iteration and remains very similar to an OK after few iterations. The global
searching phase is brief and converge to the right area for this initial DoE size for both
models. However, in this case, the optimal point was determined for less infill points for
OK than for MF model. In this case, OK outperforms the MF model.
In the section , it was observed that theMFmodel was better representing the contraints

than the OK model in a small DoE size of M = 4. The DoE size for both models is then
decreased to 4 points in the following experiment to test the IC capabilities of MF in
comparison to OK models for a lowest evaluation costs (Fig. 9).
In Fig. 9, initial models are expected to be less accurate, being insufficiently explored.

The objective is to test the ICs capacity to reach the optimal point or the right region of
interest. In Fig. 9c, the MF model best point was obtained after only 3 iterations in the
case of EIc infill comparing to 15 iterations for the OK model (Fig. 9d). Concerning the
PIc infill, the best point is obtained after 20 iterations for MF model and 18 for OKmodel
(Fig. 9e, f). For both models, the points added are clustering in the right region of interest
(close to the location of the best point). On the other hand, the EIc criterion on Fig. 9c,
d appears more spread than PIc on Fig. 9f, e. The convergence of all cases is acheieved
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Fig. 8 Optimization results obtained using the EIc criterion. Starting from 20 points (first row), the algorithm
is iterated for 5 iterations (the other subfigures)



Khatouri et al. Adv. Model. and Simul. in Eng. Sci.           (2020) 7:43 Page 16 of 20

Fig. 9 Optimization results obtained using the EIc · and PIc Starting from 4 points (first row), the algorithm is
iterated for 21 iterations. The first column corresponds to results using the MF model, and the second column
results using the OK model
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after a lower number of iterations for the EIc than PIc. An explanation can be that the PIc
infill criterion’s exploration capacity remains poor for both models. In conclusion, the EIc
overperforms the PIc and compared to the OK model, this study shows that the enriched
MFmodel results are better when the initial DoE remains relatively small thanks to amore
efficient exploration of the design space.

Comparison of multi-fidelity and ordinary Kriging enriched surrogate models

In the last section, two enrichment criteria are explored in the multi-fidelity (MF) and
single-fidelity (OK) frameworks. In the presented cases, the enrichment was able to find
the regions of the optimal values. These observations imply that the MF can be used
as a surrogate model in the constrained optimization problem to reduce its cost. The
present section aims at quantifying the gain induced by the enrichment strategy. The
reference solution for a random design space is compared to a sequentially enriched
space. Experiments are performed for multiple runs with random LHS DoEs, for varying
values of α using the EIc criterion.
Figure 10 describes the evolution of the local relative error (defined by (21)) of the

objective function at the optimum location with and without the enrichment. The same
LHS training sets are used for the MF and the OK model to compare both procedures.
The dotted lines represent values obtained after insertion of 4 infill points to a 20 points
LHS DoE.
The OK values obtained from the random and the enriched DoE have the same values,

the local error is not improved by the enrichment. Even for theMFmodel, the enrichment
does not significantly reduce the error. The gap remains very low until α = 0.5, where
the impact of the enrichment in the error reduction appears higher, particularly for MF
distances starting from α > 0.5. Moreover, the standard deviation is strongly correlated
to α as it tends toward 0, allowing a very low uncertainty about the MF results for small
α. As a result of this study, when the LF function is close enough to the HF function, the
approximation’s confidence is higher than for a single-fidelity surrogate model. In this
boundary case, the MF is shown to be better for a well-chosen LF-HF combination.

Conclusions
The proposed methodology uses a multi-fidelity model approximation to accelerate the
optimization process by applying additive corrections based on the Gaussian process. The
method improves the surrogatemodel by using statistical infill criteria adapted to account
for the violation of constraints such as the probability of improvement and the expected
improvement criteria.
In the presented cases, the enrichment strategy allows finding the region of interest when
the distance between the low- and the high-fidelitymodels is the highest. The optimization
cost was lower for the multi-fidelity model with a small initial design of experiments than
for the ordinary Kriging when using the expected improvement infill criterion. This can
be further improved with a lower distance between the high and the low-fidelity response
values used in the optimization framework. On the other hand, it has to be observed that
the model’s quality is less improved than these models’ capacity to solve an optimization
problem.Aglobal quality criterionwouldhave tobe considered toqualify themulti-fidelity
enrichment’s overall gain as a follow-up to this study.
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Fig. 10 Evolution of the relative error for enriched and random DoE for multiple runs

Corrected multi-fidelity is a promising approach for capturing various delicate high-
fidelity features. Based on this paper’s results, the reduced-order model of full-field multi-
fidelity can provide additional information on complex systems’ behavior compared to
usual scalar substitutes. Further work is needed to combine the infill criteria into an opti-
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mized strategy adapted tomore sophisticated feature sets required to treat real engineering
optimization test cases.
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