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Abstract

We present a microfluidic method to measure the elastic properties of a population of microcapsules (liquid

drops enclosed by a thin hyperelastic membrane). The method is based on the observation of flowing capsules

in a cylindrical capillary tube and an automatic inverse analysis of the deformed profiles. The latter requires

results from a full numerical model of the fluid–structure interaction accounting for nonlinear membrane elastic

properties. For ease of use, we provide them under the form of databases, when the initially spherical capsule has a

membrane governed by a neo-Hookean or a general Hooke’s law with different surface Poisson ratios. Ultimately,

the microfluidic method yields information on the type of elastic constitutive law that governs the capsule wall

material together with the value of the elastic parameters. The method is applied on a population of ovalbumin

microcapsules and is validated by means of independent experiments of the same capsules subjected to a different

flow in a microrheological device. This is of great interest for quality control purposes, as small samples of capsule

suspensions can be diverted to a measuring test section and mechanically tested with a 10% precision using an

automated process.1

Impact Statement

Encapsulation consists in enclosing a substance inside a membrane in order to protect it and control the

exchanges with the environment. Recent innovative applications use capsules containing active principles,

fragrances, flavors, phase change materials or organ cells. A microfluidic methodology is presented to measure

the membrane elastic properties of microcapsules with a liquid core. The method is based on an inverse

analysis of the deformed profiles of capsules flowing in a capillary tube. A fluid–structure numerical model

that accounts for nonlinear large deformations of the capsule wall, corresponding to a strain-hardening or -

softening material behavior, provides the database for the inverse analysis. The method is applied on artificial

microcapsules with a cross-linked ovalbumin membrane and is validated by comparison with measures in a

microrheological device. The advantage of the microfluidic method is that it is simple to implement and can

be automatized for on-line measurements.
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any medium, provided the original work is properly cited.
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1. Introduction2

Encapsulation consists in enclosing some internal substance inside a membrane in order to control the3

exchanges between the environment and the internal medium. The capsule contents are thus prevented4

from dispersing or degrading and can eventually be released where and when needed. Capsules are5

found in nature in the form of cells, bacteria, seeds, and eggs. For example, a red blood cell (RBC)6

is a natural capsule that transports hemoglobin, allows oxygen and carbon dioxide exchanges through7

the membrane, but withstands the hydrodynamic stresses prevalent in blood circulation. In industry,8

applications of small-scale encapsulation have become ubiquitous. Classical examples are found in cos-9

metics or food industry for fragrance or flavor protection (Miyazawa et al., 2000; Gibbs et al., 1999;10

Zuidam & Nedovic, 2010) but also in energy storage with phase change materials encapsulated in micro-11

carriers (Zhao & Zhang, 2011). In medicine, new treatment techniques are being developed, such as12

liposome encapsulation of fragile mRNA for vaccine applications (Kowalski et al., 2019) or the devel-13

opment of new-generation bioartificial organs where xenogenic cells (e.g. pancreas cells for diabetic14

patients) are encapsulated to prevent rejection reactions (Espona-Noguera et al., 2019). Microencapsu-15

lation thus offers a tremendous potential in the process engineering world, but many scientific challenges16

remain to be tackled, especially on the engineering and physical aspects.17

Encapsulated objects exist with a wide range of size (from nanometric to millimetric), shape and18

mechanical property (from solid to highly deformable particles). In this paper, we will focus on proto-19

typical initially spherical capsules, i.e. liquid droplets enclosed by a thin elastic membrane, which are20

widely used in industry. We exclude solid beads, as well as vesicles, which are enclosed by a lipid bi-21

layer with fluid membrane properties. In most applications, capsules are suspended in a carrying fluid.22

When the suspension is flowing, the particles are subjected to large deformations under the hydrody-23

namic stresses, which may lead to the membrane buckling and wrinkling and even to breakup. The24

motion of a microcapsule in a flowing fluid thus constitutes a formidable problem of fluid–structure25

interactions in the domain where the fluid stresses are mostly due to viscous and pressure effects and26

where the structure is undergoing large deformation. A crucial issue is thus the constitutive behavior of27

the wall material. Specifically, a neo-Hookean (NH) constitutive law is typically used to model walls28

with a strain–softening behavior, as exhibited by polymer membranes with rubber-like elasticity. For29

membranes with a network of strong covalent bonds, the strain–hardening behavior is often modeled30

by a Skalak (SK) law, which was initially designed to represent the mechanical behavior of the bi-layer31

membrane of the red blood cell (Skalak et al., 1973). However, for artificial capsules, the generalized32

Hooke’s law (GH), which corresponds to the thin membrane limit of a homogeneous three-dimensional33

law, constitutes an interesting alternative to the SK law. Indeed, the GH law assumes a linear relation34

between the stress and the deformation in the reference undeformed configuration, but exhibits a nonlin-35

ear strain–hardening behavior under large deformation. Furthermore, it can account for variable degrees36

of wall area distensibility.37

Experimentally, the measurement of the wall mechanical properties is difficult because capsules are38

small and fragile. For biological cells such as RBCs with a very deformable lipid bi-layer membrane,39

micropipette aspiration (Heinrich & Rawicz, 2005) or optical tweezers (Avsievicha et al., 2020) have40

been proposed. Those methods are not adapted to measure artificial microcapsules with a size ranging41

from a few tens of micrometers to a millimeter, because the deforming forces that are applied are a few42

pN. If this force level is sufficient to substantially deform cells, it is much too low to have any measurable43

effect on capsules. Correspondingly, different techniques to test capsules have been proposed over the44

years, such as compression between two parallel plates for millimeter-size particles (Carin et al., 2003;45

Risso & Carin, 2004), atomic force indentation (Fery & Weinkamer, 2007; de Loubens et al., 2014),46

deformation in a simple shear flow created in a counter-rotating Couette viscometer (Chang & Olbricht,47

1993b; Walter et al., 2000; Rehage et al., 2002; Koleva & Rehage, 2012) or in a planar hyperbolic48

flow (Barthès-Biesel, 1991; Chang & Olbricht, 1993a; de Loubens et al., 2014). Those techniques are49

powerful, but require a sophisticated (and often expensive) set-up. Another drawback is that they are all50

off–line and are difficult to automatize.51
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Flow 3

Another method consists of flowing individual capsules in a microchannel (with circular or square52

cross section) and measuring their velocity and deformed profiles by means of video microscopy.53

Depending on the flow conditions, an initially spherical capsule can take a parachute or slug shape when54

its diameter is of the same order as the channel cross dimension. The velocity and deformed profile of55

each capsule are then compared to the corresponding quantities computed by a full numerical model56

of the capsule in flow: this inverse analysis yields a value of the shear elastic modulus of the enclosing57

wall (Lefebvre et al., 2008; Chu et al., 2011; Hu et al., 2013; Gubspun et al., 2016). The advantage of58

the technique is that it is straightforward, can be automated (Quesada et al., 2020) and may thus yield59

statistical results for a population. However, up to now, the modulus values thus obtained have mostly60

been used in a relative sense to analyze the effect of a specific parameter (membrane polymerization61

conditions, capsules size) on the mechanical properties of a given capsule population. The modulus62

values have never been compared to those measured with another independent experiment (e.g. capsule63

in shear flow).64

It is the aim of this paper to provide a robust methodology for the assessment of the mechanical65

properties of a microcapsule wall, based on an inverse analysis of microchannel flow measurements.66

In particular, we will make a full numerical study of the motion and deformation of initially spherical67

capsules with a GH wall when they flow in a cylindrical tube. This will allow us to evaluate the importance68

of the resistance to area dilation. In order to facilitate the inverse analysis, the results will be gathered in69

plots of the main deformation and motion parameters as functions of the confinement and flow strength.70

As an illustration, the methodology will be applied to evaluate the wall shear elastic modulus of artificial71

microcapsules with a reticulated ovalbumin membrane. We will show that changing the assumptions72

made regarding the wall constitutive behavior leads to different evolution of the shear modulus with73

the deformation level: this allows us to assess the type of rheological behavior of the capsule wall, i.e.74

strain-hardening or -softening. A further novelty of this study is the validation of the microchannel75

results by means of a comparison with those obtained from microrheometric measurements on the same76

capsules in a counter-rotating Couette device.77

In section 2 we outline the fluid–structure interactions problem and its numerical solution. In section78

3, we provide new results on the tube flow of a capsule with a GH membrane, such as deformed profiles79

and plots of the relevant parameters as functions of confinement, flow strength and wall Poisson ratio.80

We also compare the results with those obtained with different wall constitutive laws (SK and NH). In81

section 4, we describe the fabrication of the microcapsules, how they are tested in microfluidics and82

microrheometry devices, and how mechanical properties are identified from captured images of their83

deformed shape at steady state in both cases. We then apply the two methods to a capsule population84

and discuss their ability to predict the membrane elastic behavior. Section 5 is dedicated to concluding85

remarks.86

2. Deformation of a spherical capsule in flow: model87

We consider an initially spherical capsule (radius a) which is filled with an internal liquid (density ρ,88

viscosity µ) and enclosed by a thin hyperelastic isotropic membrane (surface shear modulus Gs , area89

dilation modulus Ks ). This capsule is freely suspended in another incompressible Newtonian liquid90

(density ρ, viscosity µ), subjected to flow. Details of the analysis can be found in the review paper of91

Barthès-Biesel (2016) and the references therein.92

2.1. Membrane mechanics93

As the viscous forces exerted by the fluid lead to large shape distortions of the particle, care must be

taken for the modeling of the wall mechanics. Correspondingly, the position of the membrane material

points is denoted X in the undeformed reference state and x(X, t) in the deformed configuration at time

t. The local deformation of the membrane surface is measured by the Green-Lagrange strain tensor
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e = 1
2

(FT
· F − I ), where F = ∂x/∂X is the gradient of the transformation and I the identity tensor.

Two invariants of e can be defined as

I1 = tr(FT
· F) − 2 = λ2

1 + λ
2
2 − 2, I2 = det(FT

· F) − 1 = λ2
1λ

2
2 − 1, (1)

where λ1 and λ2 represent the in-plane principal extension ratios. Invariant I1 measures the shear

deformation, whereas I2 measures the local surface dilation. Since the membrane is infinitely thin, the

three-dimensional stresses in the membrane are replaced by Cauchy tensions (forces per unit arc-length

of deformed surface). The Cauchy tension tensor σ depends on a strain energy function ws (I1, I2) per

unit undeformed surface area

σ =

1

λ1λ2

F ·
∂ws

∂e
· FT . (2)

Several constitutive laws with constant material coefficients have been proposed to govern energy-

deformation relationships. They are usually derived from classical three-dimensional laws in the limit

where the initial thickness h of the capsule wall tends to zero. The surface shear modulus is then related

to the usual three-dimensional shear modulus G by

Gs = hG. (3)

The simplest law, for isotropic and hyperelastic materials, is the generalized Hooke’s (GH) law, in

which ws is a quadratic function of e:

w
GH
s = Gs

(

tr(e2) +
νs

1 − νs
[tr(e)]2

)

=

Gs

4

(

2I1 − 2I2 +
1

1 − νs
I2
1

)

, (4)

where tr(e) denotes the trace of e and −1 < νs < 1 is a surface Poisson ratio. The area dilation modulus94

is then Ks = Gs (1 + νs )/(1 − νs ), which implies that νs → 1 corresponds to an area incompressible95

membrane. Note that σ is a linear function of e for small deformation (F ≃ I ), but becomes a nonlinear96

function of e for large deformation, with a strain–hardening type behavior.97

The two-dimensional form of the Neo-Hookean (NH) law, classically used to describe volume-

incompressible rubber-like materials, is given by

w
NH
s =

Gs

2

(

I1 − 1 +
1

I2 + 1

)

. (5)

Because of the hypothesis of volume incompressibility, area dilation is balanced by membrane thinning98

so that Ks = 3Gs . Under large deformation, the Cauchy tensions exhibit a strain–softening type behavior.99

In order to describe anisotropic biological bi-layers (such as the red blood cell membrane),

Skalak et al. (1973) proposed a purely two-dimensional law (SK) with independent surface shear and

area dilation modulus

w
SK
s =

Gs

4

[

(I2
1 + 2I1 − 2I2) + CI2

2

]

. (6)

The area dilation modulus is Ks = (1 + 2C)Gs , in which the dimensionless parameter C regulates the100

resistance to area dilation. Under large deformation, the Cauchy tensions exhibit a strain–hardening type101

behavior, that becomes more pronounced as C increases.102

For C = 1 and νs = 0.5, corresponding to Ks = 3Gs , the three NH, GH, SK laws have the same small-103

deformation behavior, but predict different material responses for large strains (Barthès-Biesel et al.,104

2002; Lac et al., 2004).105

When the inertia of the capsule membrane is neglected, the local equilibrium equation of the

membrane reads

∇s · σ + q = 0, (7)
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Figure 1. Schematic illustration of an initially spherical capsule (contour C0) subjected to Poiseuille

flow in a cylindrical channel with radius l (a). Typical lengths characterizing the capsule deformation

(contour Ct at time t): Lz, Lp in the channel (b) and L1, L2 in an unbounded simple shear flow (c).

where ∇s is the surface gradient and q is the load, i.e. the external force per unit area of deformed

capsule surface Ct at time t. A no-slip condition is also imposed at the capsule wall

v(x, t) = ∂x(X, t)/∂t x ∈ Ct, (8)

where v(x, t) is the velocity of the fluids on the capsule deformed surface.106

2.2. Fluid–structure coupling and numerical method107

The flows of the internal and external liquids are governed by the Stokes equations, subjected to no slip

conditions on the capsule wall and on the flow domain outer boundary B. The velocity of the capsule

wall is given by an integral equation (Pozrikidis, 2005)

v(x) = v∞ (x) − 1

8πµ

[∫

Ct

J · qdS(y) +

∫

B

J · f +dS(y)

]

, x ∈ Ct . (9)

where v∞(x) is the unperturbed flow velocity in absence of capsule. The force q on the membrane is

determined from the mechanics of the capsule wall (Equation 7). The additional friction force on the

domain boundaries f + must be computed as part of the solution (Hu et al., 2012). The Green function

J is defined as

J =
1

| |x − y | |
I +

(x − y) ⊗ (x − y)

| |x − y | |3
. (10)

The problem is governed by the following non-dimensional parameters:108

• The size ratio a/l, where l is the flow characteristic length,109

• The membrane capillary number Cas = µV/Gs , where V is the flow characteristic velocity,110

• The ratio between dilation and shear modulus Ks/Gs .111

We solve this fluid–structure problem by coupling the Boundary Integral Method (BIM) to calculate112

the flow field, to the Finite Element Method (FEM) to calculate the force exerted by the membrane on113

the fluids (Walter et al., 2010; Hu et al., 2012). Triangular P1 elements are used to discretize all the114

boundaries. There are 5120 P1 elements and 2562 nodes on the capsule membrane, corresponding to a115

characteristic element size ∆hc/l = 0.07. At each time step, the boundary integral equation (9) is solved116

to yield the velocity of the membrane. A second-order Runge-Kutta method is then used to integrate117

equation (8) and obtain the new deformed position of the membrane material points. This information118

is sent to the FEM solid solver to compute the load q, which is then sent to the fluid solver to repeat the119

process. The explicit nature of the time integration, implies very small time steps for the scheme to be120

stable. Here, we use a time step ∆tV/l = 5 × 10−4, which guarantees stability. All the reported results121

pertain to a steady state, for which the surface area of the capsule varies by less than 10−3 × (4πa2)122

over a non-dimensional time tV/l = 1. The precision of the numerical scheme has been shown to be123

O(∆hc/l)
2 when P1 elements are used (Walter et al., 2010; Dupont et al., 2015).124
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3. Numerical prediction of the capsule deformed shape125

3.1. Deformation of a capsule flowing in a cylindrical tube126

We first consider the case where a closely fitting capsule is subjected to a bounded Poiseuille flow127

with mean velocity V , created in a straight channel with a circular cross section of radius l (Figure128

1a). We seek the steady motion and deformation of a centered capsule. Since there is a liquid film129

around the capsule (Figure 1b), its velocity vc is different from V and must be computed as part130

of the solution. Presently, results are available for capsules with a NH or SK membrane flowing in131

circular (Pozrikidis, 2005; Lefebvre & Barthès-Biesel, 2007; Hu et al., 2012) or square section tubes132

(Kuriakose & Dimitrakopoulos, 2011; Hu et al., 2013). In this section, we provide new results for133

capsules with a GH membrane law.134

The capsule centre O is initially located on the channel axis, in the middle of the tube (total length

20l) and is moved back there at each time step. The flow domain boundary B consists of the channel wall

and of the entrance Sin and exit Sout sections. On the channel wall, no-slip conditions are enforced. The

entrance and exit sections are far enough from the capsule for undisturbed Poiseuille flow conditions to

prevail

v∞ = 2V [1 − (x2
+ y

2)/l2]ez . (11)

The coupled BIM-FEM solver is used, where the characteristic dimension of the channel boundary135

elements is ∆hw/l = 0.14, except in a central part with length 2l, where a refined mesh is used with136

∆hw/l = 0.07. For a/l ≥ 0.9, we pre-deform the capsule into an ellipsoid that can fit inside the channel137

and we then follow the same procedure, while accounting for the induced pre-deformation stresses.138

For a specific membrane law, the problem solution yields the capsule deformed profile and velocity139

vc/V for given values of a/l and Cas . The overall capsule deformation is quantified with two parameters:140

the total length Lz/l and the parachute depth Lp/l that are easy to measure experimentally (Figure 1b).141

3.1.1. Capsule with a GH membrane142

The combined effects of Cas and of νs on the deformed profiles of the capsule are shown in Figure 2.143

The results are similar to those reported previously for other membrane laws. The capsule length Lz144

increases with flow strength. A parachute always forms for confinement ratios up to 0.9, with depth145

Lp increasing with Cas . For higher confinements a/l > 0.9, the parachute forms only when the flow146

strength exceeds a critical value Casc , which increases with a/l: specifically Casc increases from 0.03147

to 0.06 when a/l increases from 1 to 1.1.148

The new results in Figure 2 pertain to the effect of the membrane dilation modulus as measured by149

νs . We first note that νs has no effect on the front profile of the capsule for given values of a/l and Cas .150

The same remark applies to the global capsule profile for small flow strength (e.g. Cas = 0.01) and151

thus moderate deformation (Figure 2a). Any influence of νs occurs at the rear of the capsule: the main152

effect of a reduced resistance to dilation is an increase of the parachute depth (Figure 2b,c), resulting in153

a sharp parachute edge at high flow strength (Figure 2c). When such a sharp edge appears, the capsule154

is near the transition to continuous elongation, where it cannot reach a steady shape.155

The plots in Figures 3a, b give the evolution of the two lengths Lz and Lp (characterizing the capsule156

deformation) with the confinement ratio a/l and capillary number Cas . Note that the capsule velocity157

vc is larger than the average flow velocity V , due to the film around the capsule (Figure 3c). The ratio158

vc/V decreases from 2 for zero size capsules (that would travel with the maximum fluid velocity) to159

almost unity for very large capsules (that would travel with almost the average fluid velocity).160

3.1.2. Effect of constitutive laws on capsule deformation161

The effect of the membrane constitutive laws on capsule deformation for Ks = 3Gs is shown in Figure 4162

for different confinement ratios and flow strengths. For low flow strength (Cas = 0.07) and low size ratio163

(e.g. a/l = 0.8), the capsule deformation is small and the three laws almost predict the same profile, as164

expected. As we increase a/l, while keeping Cas = 0.07, the stresses in the capsule membrane increase:165
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(a)
-1.0

-0.5

0.0

0.5

1.0
a/l = 0.8 a/l = 0.9 a/l = 1.0 a/l = 1.1 Cas = 0.01

y/
l

νs = 0.0 νs = 0.2 νs = 0.5

(b)
-1.0
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0.0

0.5

1.0
a/l = 0.8 a/l = 0.9 a/l = 1.0 a/l = 1.1 Cas = 0.07

y/
l

νs = 0.0 νs = 0.2 νs = 0.5

(c)
-1.0
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a/l = 0.8 a/l = 0.9 a/l = 1.0 a/l = 1.1 Cas = 0.15

y/
l

νs = 0.0 νs = 0.2 νs = 0.5

Figure 2. Tube flow: effect of flow strength and surface Poisson ratio νs on the steady-state capsule

profile in the yz-plane. (a) Cas = 0.01; (b) Cas = 0.07; (c) Cas = 0.15.
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Figure 3. Tube flow: plots of the (a) capsule total length Lz , (b) parachute depth Lp and (c) centre of

mass velocity vc as a function of Cas and νs . Same color/line style code as in Figure 2; the symbols

refer to different size ratios as shown in (b).
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Figure 4. Tube flow: effect of the membrane constitutive law on the capsule deformed profile for

Ks = 3Gs . (a) Cas = 0.07; (b) Cas = 0.15.
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Figure 5. Tube flow: plots of the (a) capsule total length Lz , (b) parachute depth Lp and (c) centre of

mass velocity vc as a function of Cas for two membrane laws with Ks = 3Gs . Blue dotted line: NH,

black full line: GH (νs = 0.5); the symbols refer to different size ratios as shown in (b).

as a consequence, a capsule with a strain–softening NH membrane deforms more than capsules with166

strain–hardening SK or GH membranes (Figure 4a). Eventually, the large (a/l = 1.1) NH capsule167

does not reach steady state and undergoes continuous elongation (like the capsules with a GH law and168

νs < 0.5). As the flow strength increases (Figure 4b), continuous elongation of NH capsule occurs for169

lower confinement ratios, specifically for a/l ≥ 0.85 when Cas = 0.15 (Hu et al., 2013). By contrast,170

capsules with a strain–hardening membrane can always reach a steady state. The difference between the171

SK or GH membranes is very small, and occurs at the rear of the capsule for large confinement ratios,172

only. The plots of the characteristic lengths and velocity ratio as functions of a/l and Cas are shown in173

Figure 5 for strain–softening and strain–hardening membranes (where SK results have been eliminated,174

as they were very close to the GH ones). All the points in Figure 5 correspond to steady situations.175

The plots in Figures 3 and 5 can be used to perform the inverse analysis of the experimental profiles:176

from the measured values of the lengths Lz and Lp , we can deduce the size ratio a/l and capillary number177

Cas for a given membrane law. In practice it is easy to measure vc , but difficult to control V : the plots178

giving vc/V as a function of a/l and Cas are thus essential for the final determination of the membrane179

shear elastic modulus Gs = (µvc/Cas)(V/vc ), where µ is the suspending fluid viscosity, which is180

supposedly known. From the experimental point of view, the plots in Figures 3 and 5 indicate clearly181

that the inverse analysis can be performed with precision only if the capsule deformation is significant182

enough for a parachute to form, i.e. for values of Cas > 0.05. Depending on their size and composition,183

microcapsules can have a shear modulus that varies between ∼ 0.05 and 1 N/m (Gubspun et al., 2016).184

They can be observed without too much blurriness only if their velocity is no more than a few mm/s. This185

means that the fluid viscosity must be large (of order 1 Pa.s) and that a high pressure is thus necessary186

to flow the suspension in a small diameter capillary tube. Typical experiments with the corresponding187

inverse analysis are described in section 4.2.188

3.2. Deformation of a capsule in a simple shear flow189

The deformation of a spherical capsule in a simple shear flow is well documented (see the review by

Barthès-Biesel (2016) and the references therein). The influence of different membrane laws (NH, SK)

has been studied, except for the case where the capsule wall is governed by a GH law with different

values of the surface Poisson ratio. It is thus one aim of this paper to fill this void and provide a

full database for this situation. We now consider the case where the capsule is freely suspended in an

unbounded simple shear flow with undisturbed velocity given by

v∞ = γ̇yez . (12)
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Figure 6. Simple shear flow: plots of the (a) capsule deformation in the shear plane and (b) profile

semi-axis L3 along the vorticity direction for NH and GH laws.

where γ̇ is the shear rate. The flow problem is governed by Equation (9), where the boundary B is taken190

far enough from the capsule center for the perturbation f + to be negligible. As a consequence only191

the first integral remains in Equation (9). The only problem parameters are then the capillary number,192

now defined as Cas = µγ̇a/Gs and the ratio Ks/Gs . For a given membrane law, the model provides193

the deformed profile of the capsule as a function of Cas . As the deformed capsule is approximately194

ellipsoidal, we determine its ellipsoid of inertia which has semi-principal axes L1, L2 in the shear plane195

(Figure 1c) and L3 in the vorticity direction. The deformation in the shear plane is then quantified by the196

Taylor parameter D12 = |L1−L2 |/(L1+L2). Results for D12 are available in the case Ks/Gs = 3 for NH,197

SK and GH membranes (Lac & Barthès-Biesel, 2005; Walter et al., 2010; Dupont et al., 2015), and L3198

is never given, although it is necessary to determine the deformed capsule volume. New results for GH199

and NH membranes are thus presented in Figure 6, where the relation between D12 and Cas is given as200

well as the evolution of L3 with D12. For a GH membrane, the effect of decreasing νs , i.e. the dilation201

modulus, is to increase the deformation for the same flow strength. For νs = 0, the capsule undergoes202

continuous elongation and eventually ruptures for Cas & 0.4. The same phenomenon appears around203

Cas = 1 and D12 ≃ 0.6, for a NH membrane.204

The plots of Figure 6 are simple to use: for a given membrane law, the value of deformation D12205

yields the value of L3 and Cas . Knowing L3, L1 and L2, it is easy to compute the volume of the capsule206

and its initial radius a. The elastic modulus Gs is obtained from Cas , knowing the values of γ̇ and µ,207

both given by the shear apparatus.208

4. Experimental observation of capsule deformation and identification of the wall mechanical209

properties210

4.1. Capsule fabrication211

Microcapsules are fabricated by means of interfacial polymerization with cross-linking reactions212

(Edwards-Lévy et al., 1993). Specifically, 1 ml of an aqueous solution, consisting of 10% (w/v) ovalbu-213

min (Sigma) dissolved in phosphate buffer (pH 7.4, Sigma), is dispersed in 10 ml of vegetable oil (ISIO214

4, Lesieur) at a stirring speed of 2400 rpm in a laboratory vortex (Heidolph Top-Mix 94323) for 10 sec-215

onds. Then, 10 ml of vegetable oil containing 2.5% (w/v) terephthaloyl chloride (TC, Sigma) is added to216

the emulsion. Interfacial reticulation is allowed to develop at rest for 15 minutes. The suspension is then217

centrifugated at 800 rpm for 1 minute. The supernatant is removed and replaced by vegetable oil contain-218

ing 2% (v/v) Tween 20 (Sigma). The pellet is manually resuspended in this mixture by gentle successive219

aspirations and ejections from a pipette tip. After this first washing step, the suspension is centrifugated220

at 800 rpm for 1 minute. The supernatant is then removed and replaced by a 2% (v/v) solution of Tween221

20 diluted in distilled water. The same resuspension procedure as in oil-Tween 20 mixture is used. This222

second washing step is followed by three rinsing stages, each one consisting of gently suspending the223

capsules in distilled water, centrifugating the suspension, and resuspending the pellet in clean distilled224
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(a) (b)

1000

Figure 7. (a) Microfluidic set-up; (b) microrheometry set-up. All lengths are in µm.

water. This procedure yields quasi-spherical deformable capsules with radii ranging from a few tens225

up to a few hundreds of microns. The suspension is filtered though a 100 µm sieve in order to narrow226

the size range. The capsules are resuspended in glycerol for deformation experiment purposes. We have227

verified that there is no shape alteration and no apparent fluid exchanges across the membrane during at228

least 3 hours, which is the maximum duration of an experiment, after which the capsules are discarded.229

4.2. Identification of wall elasticity by flowing microcapsules in a microfluidic cylindrical capillary230

The microfluidic flow system, shown in Figure 7a, consists of a straight 28-mm-longcylindrical capillary231

tube with an internal diameter 2l = 75 µm (Capillary tube 1), embedded in another tube (Capillary232

tube 2), which is immersed in polydimethylsiloxane (PDMS Sylgard 184, Dow Corning) to eliminate233

optical distortions (Lefebvre et al., 2008). Just prior to an experiment, 500 µl of filtered capsule pellet234

is suspended in 12 ml glycerol (Sigma). The capsule suspension, which has a viscosity of µ = 0.92235

Pa.s at 20◦C, is injected into the microchannel by means of a pressure controller (EZ-Flow, Fluigent).236

Pressure values range from 800 mbar to 1500 mbar, which provide capsule velocities from 0.8 to 6237

mm/s. Image acquisitions of individual capsules flowing in the tube are performed with a fast camera238

(Fastcam MINI AX50, Photron) at frequencies f ranging from 2000 to 6000 Hz and an exposition time239

1/ f . The camera is mounted on a DMI8 microscope (Leica) with a x40 magnification and 0.6 numerical240

aperture objective.241

Recordings are performedat least 5 mm downstream of the inlet to ensure that the capsule has reached242

its steady state. The capsule contours are manually extracted from the experimental images using ImageJ243

(NIH, USA). The capsule mid-surface and channel wall are assumed to be located in the middle of the244

corresponding dark contour lines (Figure 8), leading to an error of ±1 pixel on the extracted contour245

points and to an error of order ±2% on the extracted lengths L
exp
z and L

exp
p . The capsule velocity v

exp
c246

is determined by manually measuring the displacement of the capsule front between the first and last of247

10 successive images and dividing it by the corresponding time duration. The error on v
exp
c is also of248

order ±2%.249

The inverse analysis strategy consists of identifying the mechanical properties from the experimental

deformed profiles using the data-driven automatic procedure of Quesada et al. (2020). The databases

contain the predicted steady-state values of Lz and Lp as functions of parameters Cas and a/l for the

different constitutive laws (NH, GH νs = 0.5, 0.2, 0) corresponding to Figures 3 and 5. For a given

constitutive law, we project the experimental values L
exp
z and L

exp
p onto the (Lz , Lz − Lp) hypersurface

that contains all the admissible solutions. The corresponding Cas and a/l values are identified by

means of diffuse approximation. This approximation uses a local weighted least squares fitting that is

valid in a small neighborhood created within the lengths-space around the point (L
exp
z , L

exp
z − L

exp
p )

and containing 14 neighbors of the database. Knowing the lengths-parameters relationship for the 14
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Figure 8. (a, d) Experimental image of the capsule in a cylindrical tube (diameter 75 µm) with extracted

contour (full line); (b, e) two potential fits of the extracted profiles using a NH law; (c, f) Profile fits with

different membrane laws. The parameters of the different fits are gathered in Table 1.

Fit 1 Fit 2 Fit 3 Fit 4 Fit 5 NH law GH law GH law

L
exp
z − 2% L

exp
z + 2% L

exp
p − 2% L

exp
p + 2% (νs = 0.2) (νs = 0.5)

Figure 8(b) Figure 8(c)

a/l 0.88 0.89 0.88 0.90 0.87 0.90 0.91 0.89

Cas 0.06 0.04 0.07 0.05 0.07 0.05 0.04 0.07

Gs (N/m) 0.044 0.067 0.037 0.053 0.037 0.053 0.071 0.035

H/a (%) 1.9 1.6 2.7 1.6 3.1 1.6 2.0 1.9

Figure 8(e) Figure 8(f)

a/l 0.98 0.99 0.97 0.99 0.96 0.99 1.02 1.01

Cas 0.08 0.07 0.09 0.07 0.09 0.07 0.08 0.13

Gs (N/m) 0.037 0.043 0.033 0.043 0.033 0.043 0.036 0.022

H/a (%) 5.1 4.5 5.9 3.4 7.0 3.4 2.4 2.4

Table 1. Size ratio a/l, surface capillary number Cas , surface shear modulus Gs and non-dimensional

modified Hausdorff distance H/a corresponding to the different profile fits of Figure 8. The NH and GH

(νs = 0.2, 0.5) results correspond to Fit 1.

data points, we deduce the values of Ca
f it
s and (a/l) f it for the measured lengths by solving an inverse

problem. The surface representing vc/V as a function of a/l and Cas is decomposed into triangles with

vertices on the database points. The point {Ca
f it
s , (a/l) f it } corresponds to one triangle of the velocity

surface and the ratio (vc/V ) f it is the distance weighted average of the values of vc/V on the three

vertices (Delaunay triangulation procedure). The membrane shear modulus Gs is then

Gs =
µv

exp
c

Ca
f it
s

(

V

vc

) f it

. (13)

As a check, we compute the numerical deformed profile of the capsule, corresponding to the values250

{Ca
f it
s , (a/l) f it } and compare it to the experimental profile. The modified (i.e. mean) Hausdorff distance251

H/a between the two profiles gives an estimate of the precision of the inverse analysis. Any capsule that252
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12 X.-Y. Wang et al.

Figure 9. Experimental image of the capsule in a simple shear flow with extracted contour. The scale

indicates 75 µm.

cannot be fitted with H/a ≤ 0.06 is discarded. We also discard non symmetrical profiles which cannot253

be analyzed with the model.254

For a given law, different fits are obtained using the values L
exp
z , L

exp
p (Fit 1), decreasing/increasing255

L
exp
z (and thus L

exp
p ) by 2% (Fit 2/Fit 3 respectively) and finally, decreasing/increasing L

exp
p by 2%256

while keeping L
exp
z constant (Fit 4/Fit 5 respectively). This procedure allows us to evaluate the sensitivity257

of the inverse analysis to experimental error. It also allows us to compute a mean value and deviation for258

Gs . As an example, we consider two deformed profiles (Figures 8a,d) and the resulting inverse analysis259

fits with a NH law (Figures 8b,e showing only Fits 2 and 3 for clarity). The corresponding fit values260

are gathered in Table 1. For the smaller capsule (a/l ≃ 0.9), the five fits are equally good in terms of261

Hausdorff distance, but lead to a 27% dispersion of shear modulus values (Gs = 0.048 ± 0.0013N/m):262

this dispersion is mostly due to the fact that, for capsules smaller than the tube radius (a/l ≤ 0.9), the263

lengths Lz or Lp do not vary much with Cas (Figure 5) thus a small variation of Lz leads to a large264

variation of Cas . For the larger capsule (a/l ≃ 1), the Hausdorff distance is near the acceptable limit of265

0.06a (except for Fit 4 which is discarded), mainly, because the tips are not fitted very well. However, the266

capsule being large, the dispersion is only 13% on the shear modulus values (Gs = 0.039±0.0005N/m).267

This shows that an absolute value of the precision of the inverse analysis procedure cannot be evaluated268

with a single parameter such as H/a as it depends on the quality of the fit and also on the capsule size269

and deformation level. The same procedure can be applied to fit the profile with other membrane laws270

as shown in Figures 8c,f where only the results of Fit 2 are shown. Of course, the values of Gs depend271

on the law as shown in Table 1.272

4.3. Identification of wall elasticity using microrheometry273

We now use a microrheometric device to determine the capsule membrane properties by subjecting274

the particles to a simple shear flow. A 10 ml volume of a capsule suspension in glycerol (volume275

concentration 0.5%) is placed in a counter-rotating Couette viscometer (MCR 702, Anton Paar). The276

viscometer consists of a transparent cup and an opaque inner cylinder with a 1 mm gap (Figure 7b) . A277

45o mirror, located under the cup, allows us to observe the capsules in the shear plane by means of a278

camera (model LM165M, Lumenera) with a x5 magnification and 0.14 numerical aperture objective,279

operating at 32 frames/s. The camera is focused on the mid-plane of the gap, where the flow velocity is280

zero. We only record the capsules that are stationary and appear clearly in the observationwindow (which281

is easier to say than to do). During an experiment, the shear rate γ̇ is kept constant for a typical duration282

of 10 min and is progressively increased. The contour of the deformed capsules is extracted manually283

with ImageJ. A least squares fit of the contour with an ellipse yields the values of the semi-axes L1 and284

L2 (Figure 9). Note that the pictures are not as sharp as those obtained with the microfluidic set-up, due285

to inferior performance of the camera included in the device and to the fact that it is challenging to keep286

the capsule steady. The fuzziness of the profile leads to an error of ±20% on D12. Correspondingly, it287

is unreasonable to try to analyze capsules with D12 < 0.35.288

The inverse analysis is straightforward, because the deformation of the capsule depends on only289

one parameter, Cas . For a given law and shear rate γ̇, the measured semi-axes L1 and L2 yield the290

deformation D12 from which we deduce Cas and L3/a using the plots in Figure 6. The capsule radius291
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is thus a =
√

L1L2L3/a and the shear modulus is Gs = µγ̇a/Cas. The capsule presented in Figure 9 is292

subjected to a 350 s−1 shear rate in a fluid with viscosity 0.756 Pa.s. The radius is a = 45 µm and the293

deformation D12 = 0.38 provides a value of shear elastic modulus equal to Gs = 0.044 N/m for a NH294

membrane and to 0.024 or 0.038 N/m for a GH membrane with νs = 0.5 or 0.2, respectively.295

4.4. Characterization of a capsule population296

As we measure a capsule suspension in both set-ups, we can have results on a population. In order297

to compare the values of Gs obtained with different membrane laws, it is convenient to use the mean298

profile elongation Λ = p/2πa where p is the perimeter of the capsule deformed profile in the yz-plane.299

The non-linear constitutive law, which is appropriate to model the capsule membrane, is the one that300

yields the same constant value of Gs for any deformation level Λ. Note that all laws should lead to the301

same small deformation value of Gs , since they are then equivalent.302

The results from the microfluidic device are shown in Figure 10, where the values of Gs , obtained303

from the analysis of different deformed capsules with an estimated radius in the range 32 − 47 µm, are304

plotted as a function of Λ for three different membrane laws (NH and GH with νs = 0.5 or 0.2). The305

error bars correspond to the dispersion of the five fits. As explained earlier, they are larger for small306

deformation and/or small Cas . In order to visualize the trend of the data, a best fit of Gs values obtained307

with each law, is also shown.308

The values of Gs obtained with NH law are approximately constant with a mean value Gs =309

0.043±0.004N/m. This indicates that the NH law is a good candidate to model the ovalbumin membrane310

of the capsules. The results obtained with GH (νs = 0.5) law are in the same range as the results for311

NH law for small deformation (Λ = 1.06), as expected. However, the values of Gs tend to decrease with312

increasing deformation: this means that the strain–hardening GH law is not fit to model the membrane313

behavior under large deformation, since the parameter Gs must be decreased as deformation increases.314

The larger dispersion of the NH values of Gs compared to that of the GH ones is linked to the fact that315

the values of Cas are larger for the GH analysis than for the NH one.316

Furthermore, it is possible to verify if, indeed, the capsule membrane is shear-softening. This is done317

by increasing the flow strength until a continuous elongation regime is reached. The set-up described318

in Figure 7a did not allow for high enough flow velocity to reach this regime. However, as a proof of319

concept, we have flowed the same capsules in a slightly different microfluidic system consisting of a320

square section (100 × 100 µm2) channel. Continuous elongation of a capsule is then observed under321

high flow velocity, as shown in Figure 11.322
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14 X.-Y. Wang et al.

Figure 11. Left to right: successive profiles of a capsule showing continuous elongation in a square

section channel (100 × 100 µm2, a = 50 µm, Vc ∼ 23 mm/s, µ = 0.92 Pa.s). The capsule has travelled

about 200 µm between two successive profiles and is clearly undergoing break-up in the last picture.

Images taken by E. Hasiak.

When we use the GH law with νs = 0.2, it it difficult to fit the experimental profiles with the same323

values of a/l as those used for the NH or GH (νs = 0.5) fits: the size ratio has to be increased by 10 to324

15%. This leads to values Cas that are smaller than those obtained with the other fits and consequently325

to larger values of Gs , as can be noted in Figure 10. The significant decrease of Gs with deformation and326

the dispersion of the fit results using the GH (νs = 0.2) law indicate that νs = 0.2 is not appropriate to327

model capsules with an ovalbumin membrane. Gubspun et al. (2017) conducted pore flow experiments328

on capsules with a reticulated human serum albumin membrane (thus very similar to the present capsules329

with an ovalbumin membrane) and provide deformed profiles with their respective size ratios a/l and330

Cas values obtained assuming a GH membrane with νs = 0.4. We have tried to fit the published profiles331

with the same law and with the indicated parameter values without success. This may indicate that the332

GH law with values of νs < 0.5 is not very appropriate to model this type of capsules.333

When we analyze the microrheometric measurements, it is not possible to give a trend of the values334

of Gs with Λ because of the fairly large error on D12. We have measured 25 capsules with a radius335

between 30 and 46 µm subjected to deformation levels 0.35 < D12 < 0.5. There is a definite effect336

of the membrane constitutive law because the deformation is fairly large. Correspondingly, the mean337

value of the shear modulus depends on the law: it is found to be Gs = 0.039 ± 0.01 N/m for NH law,338

Gs = 0.021 ± 0.007 N/m for GH (νs = 0.5) and Gs = 0.033 ± 0.01 N/m for GH (νs = 0.2), all with339

a standard deviation of ±25%. This large deviation is mostly linked to the error in the measurement of340

D12. Another source of error is also due to the fact that the inverse analysis uses deformation curves341

obtained for a viscosity ratio equal to unity between the internal and external liquids, whereas this ratio342

is much smaller than 1 in the experiments. However, Foessel et al. (2011) showed that the influence of343

this viscosity ratio is very small and does not modify significantly the relationship between D12 and344

Cas , up to D12 ≃ 0.5. This is why we have discarded results with deformation larger than 0.5.345

Altogether, the microrheometric Gs values, shown as shaded areas in Figure 10, overlap well with346

the results obtained with the microfluidic tube for large deformation. This is clear for the NH law, for347

which Gs is found to have the nearly constant value 0.043±0.004 N/m by microfluidics or 0.039±0.01348

N/m by microrheometry. In the case of GH (νs = 0.5) law, this conclusion applies for the range of349

values of Gs obtained for large deformation (Λ > 1.10) i.e. 0.027∼ 0.015 N/m by microfluidics and350

0.021±0.007 N/m by microrheometry.351

This validates the microfluidic approach to measure microcapsule properties.352

5. Conclusion353

The main objective of this paper was to propose a microfluidic methodology to measure the elastic354

properties of a population of microcapsules. Why this method? Because the operating principle is simple355

and the experimental set-up fairly inexpensive, apart from the vizualisation devices (microscope and356

high-speed camera), which are indispensable to any dynamic micro-apparatus. The method is based on357

the observation of flowing capsules in a cylindrical capillary tube and an inverse analysis of the deformed358

profiles. The latter requires a full numerical model of the fluid–structure interaction, that accounts for359
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nonlinear membrane elastic properties, which we provide under the form of databases for an initially360

spherical capsule with a membrane governed by a neo-Hookean or general Hooke’s law with different361

surface Poisson ratios. We also detail how the inverse analysis can be automated to provide information362

on the type of elastic constitutive law that governs the capsule wall material together with the value of the363

corresponding elastic parameters. This is possible because the confinement imposed by the microfluidic364

configuration allows for large deformation of the capsule membrane. Note that a microfluidic method,365

based on a similar inverse analysis adapted to the specific case of red blood cells, has been proposed to366

analyze automatically large cell populations (Saadat et al., 2020). The shape characterization is different367

from the one presented here, as it had to be adapted to smaller, discoidal particles.368

Another microrheological method is used where the capsules are subjected to a simple shear flow369

in a counter rotating Couette device. The method consists in capturing the deformed profile of those370

capsules with their centre of mass in the zero velocity plane, which is somewhat tricky to perform. The371

necessary databases for the inverse analysis are also provided for an initially spherical capsule with a372

membrane governed by a neo-Hookean or general Hooke’s law with different surface Poisson ratios.373

We validate the two methods by confronting the results obtained with either one on a population of374

artificial capsules with cross-linked ovalbumin membrane. We test three types of membrane laws, to375

find for which constant values of Gs are obtained: a strain-softening NH law and two strain-hardening376

GH laws with dilation to shear ratios Ks/Gs = 3 or 1.5 (νs = 0.5 or 0.2). The microfluidic method377

predicts that the membrane shear modulus Gs is approximately constant for a NH law: this indicates that378

this constitutive law is appropriate to model the mechanical behavior of the ovalbumin membrane. In379

contrast, the values of Gs decrease with deformation for GH (νs = 0.5) law and exhibit much dispersion380

for GH (νs = 0.2) law. With the microrheometric method, there is too much experimental uncertainty381

to decide which law is best adapted to describe the constitutive behavior of the membrane material. On382

average though, the high-deformation values of the membrane shear elastic modulus are the same with383

the two methods for any given law: this validates the microfluidic methodology. A further potentiality of384

the microfluidic methodology is that once Gs is known, it is possible in principle to check if the capsule385

membrane is strain-softening (NH law) or strain-hardening (GH law). This can be done by increasing386

the flow rate to exceed the critical value of Cas past which continuous elongation occurs when the387

membrane is strain-softening. If continuous elongation is observed, the NH law is a good candidate to388

model the wall behavior. If not, the wall is then strain-hardening and GH law should serve as a good389

approximation.390

The feasibility study on artificial ovalbumin capsules allows us to define the optimal conditions to391

diminish the impact of inherent uncertainties. For the microfluidic method to be precise, the capsule392

global deformation should be large enough, i.e. the elongation ratio Λ of the perimeter of the observed393

profiles should be larger than 1.05. Furthermore, the size ratio between the capsule and the tube radii,394

should not be smaller than 0.9: indeed, for smaller ratios, the deformation does not vary much with395

flow strength, thus leading to large errors in the determination of the latter. Note that the capsule must396

be transparent enough to allow measurement of the penetration length of the parachute, which is an397

essential feature of the deformation. Consequently, the microfluidic method will not work on opaque398

capsules, whereas the rheometric method would still be pertinent.399

Potentially, the great strength of this technique is that it allows to determine the type of membrane400

constitutive behavior: strain-hardening or -softening. This is very important as, under given flow stress,401

strain-softening capsules may be more prone to deformation induced damage than strain-hardeningones.402

Furthermore, the microfluidic method is well adapted for quality control, as it allows small batches of a403

capsule suspension to be diverted from a production line to a measuring test section. Of course, images404

and their contour should be acquired automatically, as done by Minetti et al. (2014) or Saadat et al.405

(2020), and post-treated automatically as explained in this paper.406
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