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Abstract: An innovative data-driven model-order reduction technique is proposed to model di-
lute micrometric or nanometric suspensions of microcapsules, i.e., microdrops protected in a thin
hyperelastic membrane, which are used in Healthcare as innovative drug vehicles. We consider a
microcapsule flowing in a similar-size microfluidic channel and vary systematically the governing
parameter, namely the capillary number, ratio of the viscous to elastic forces, and the confinement
ratio, ratio of the capsule to tube size. The resulting space-time-parameter problem is solved using
two global POD reduced bases, determined in the offline stage for the space and parameter variables,
respectively. A suitable low-order spatial reduced basis is then computed in the online stage for
any new parameter instance. The time evolution of the capsule dynamics is achieved by identify-
ing the nonlinear low-order manifold of the reduced variables; for that, a point cloud of reduced
data is computed and a diffuse approximation method is used. Numerical comparisons between
the full-order fluid-structure interaction model and the reduced-order one confirm both accuracy
and stability of the reduction technique over the whole admissible parameter domain. We believe
that such an approach can be applied to a broad range of coupled problems especially involving
quasistatic models of structural mechanics.

Keywords: data-driven model; model order reduction; proper orthogonal decomposition; manifold
learning; diffuse approximation; microcapsule suspension; Hausdorff distance

1. Introduction

Numerical modeling and simulation today appear to be an indispensable science to
analyze physics-coupled problems (e.g., micrometric and nanometric suspensions), but
also for innovative design and optimization of complex three-dimensional systems in engi-
neering and industry (health, automotive, aircraft, etc.). Although one can nowadays find
robust and accurate open-source or commercial codes for the simulation of multiphysics
systems, it is still hard to use them in the context of robust or optimal design because
of the prohibitive computational time that does not match with engineering production
horizons. In order to accelerate computations, one can make use of parallel HPC (High
Performance Computing) facilities, but this can become financially costly. For most appli-
cations, even with HPC facilities, the evaluation of the solutions takes days or weeks for
three-dimensional multi-coupled problems.

Alternatively, a current tendency is to use machine learning or artificial intelligence
tools to capitalize knowledge stored into data and use it for future case studies. It leads to
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less redundant or useless computations, while the database of results continues to grow
with more and more relevant information contents. With machine learning, one can expect
to explore the design spaces in an easier, faster and more efficient way. However, one
usually needs expertise to design and train artificial neural networks (ANN) correctly. For
high-dimensional data, the training stage may require large computational resources and
issues of quality of data may also be raised. Machine learning can be extended to time
dependent problems and dynamical system using e.g., recurrent neural networks [1].

However, for particular use cases like physical systems, machine learning algorithms
are designed to return three-dimensional spatial fields. This means that the outputs of
the networks are high-dimensional vectors, which may induce training convergence and
accuracy issues. Over the last two years, one could observe the rise of so-called Physics-
informed neural networks (PINN) where the artificial neural networks are trained from
a loss function that includes physical information (like partial differential equations),
see e.g., [2].

Another class of ’machine learning’ methods are the data-driven model order reduc-
tion (MOR) techniques, that use data generated from a (time-consuming) high-fidelity
solver, also called the full-order model (FOM) [3,4]. Data-driven and non-intrusive reduced-
order models (ROM) can be seen as supervised ANN [5,6]. For parametrized partial differ-
ential problems, ROMs usually perform a dimensionality reduction by means of suitable
reduced bases. This can be achieved via different approaches such as the Proper Orthogonal
Decomposition (POD) [7–9], piecewise tangential interpolation [10], Proper Generalized
Decompositions (PGD) [11–13], Empirical Interpolation Methods (EIM) [14–16] or via dif-
ferent greedy procedures [17]. Then one has to find the manifold that maps the parameters
to the coefficients of linear combination of the reduced basis functions. This can also
be achieved in a supervised way, by means of universal approximation techniques like
diffuse approximation [18] for example. Using ROMs may lead to substantial speedups as
compared to FOM, from say 10 up to 10,000. One can even imagine real-time computations
in some cases [19].

The ’ultimate’ case is that of space-time-parameter problems involving spatial fields,
timeline and design variables. This is of course of industrial importance, but still an issue
and a current active field of research (see [20] for example). For such problems, the data
are generally organized in data cubes (Figure 1). In this paper, a data-driven reduced-
order modeling approach is proposed for space-time-parameter mechanical problems
involving an equation of kinematics and a quasi-static law of equilibrium. As particular
application, the physical problem that is addressed is the dynamics of dilute suspensions
of micrometric capsules in microfluidic channels. Microcapsules can be used in Healthcare
as innovative drug transportation vehicles into blood vessels and are expected to deliver
drugs at identified targets [21,22]. They are composed of an elastic membrane protecting a
liquid inner core and are used in suspension in another liquid. Testing them in microfluidic
environments offers great potential to determine the capsule behavior and characterize
the mechanical properties of the membrane [23–29], but also for sorting or enrichment
of capsule suspensions [30–34]. We presently focus on the flow of a dilute suspension
of initially spherical micrometric capsules in a microfluidic channel, which is a complex
three-dimensional inertialess fluid-structure interaction problem that interestingly depends
on only two independent design variables: the capillary number of the capsule Ca, which
is a non-dimensional number that estimates the order of magnitude of the viscous forces
acting on the capsule with respect to the elastic forces that build up in the membrane, and
the confinement ratio a/ℓ that provides a comparison between the initial capsule diameter
and the channel width.
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Figure 1. Space-time-parameter data cube.

Proper Orthogonal Decomposition has been shown to be particularly suitable to build
reduced order models (ROM) of microcapsules [35], but so far no model capable of predict-
ing capsule dynamics currently exists. The originality of the paper is to propose a ROM
of the capsule-fluids interactions which provides the time-evolution of the capsule shape
for any parameter values. From the capsule shape, it is indeed possible to deduce all the
quantities of interest (viscous load, internal tensions within the membrane, membrane en-
ergy, etc.) in post-treatment. The ROM is inspired from the physical problem, in which the
boundary condition stipulates that the fluid velocity equals the capsule membrane velocity.
The correction of the capsule node position field can thus be obtained by integrating the
velocity field over time. The challenge remains to correlate the position and velocity fields,
which we propose to do with diffuse approximation and manifold learning [18,36,37] using
the principal modes of both fields obtained by POD decomposition.

Numerical experiments will demonstrate the accuracy and efficiency of the approach,
comparing reduced-order solutions to the full-order ones. We believe that the methodology
proposed in this paper can be applied to a broad range of multiphysics problems such as
fluid-structure interactions, structural dynamics using quasi-static structural mechanics
models and related problems.

This paper is organized as follows. In Section 2, we describe the physical problem
and its full order model solution. In Section 3.2, we construct parametric and spatial
reduced-order modes using a set of pre-computed simulations. This allows to introduce
a reduced-order model that expresses the displacement and velocity of a capsule at a
selection of snapshots. In Section 3.4, we build a reduced model that corresponds to
any parameter vector of Ca and a/ℓ values by estimating its corresponding principal
components. Then, with the use of a Diffuse Approximation (DA) method, we adopt a
data-driven manifold learning to predict the deformation of the capsule in the flow for a
chosen time discretization. Finally, in Section 4, we will validate the whole computational
ROM approach with a comparison to the FOM solutions.

2. Material and Methods
2.1. Problem Statement

Let us consider a spherical micrometric capsule of radius a freely placed in a three-
dimensional microfluidic channel with square cross-section of length 2ℓ (see Figure 2). The
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capsule and the channel are filled with an incompressible Newtonian fluid of the same
constant density ρ and dynamic viscosity µ. The capsule is enclosed by a thin hyperelastic
isotropic membrane (surface shear modulus Gs, area expansion modulus Ks = 3Gs). It is
subjected to a Poiseuille flow of mean velocity V.

Figure 2. Initial configuration considered in the FOM model: an initially spherical capsule is placed at the center of a
square-section channel. The time-evolution of its dynamics is computed using a reference frame centred onto the capsule
centre of mass.

The problem is governed by two dimensionless numbers:

• The confinement ratio a/ℓ, ratio of the capsule to tube sizes;
• The capillary number Ca = µV/Gs, ratio of the viscous forces onto the capsule

membrane to the membrane elastic forces.

The Reynolds number of the external flow is assumed to be very small (typically of
order 10−2 or less), inertia being negligible because of the spatial scales involved in the
problem. As far as the internal flow is concerned, its velocity is induced by the motion of
the capsule membrane, which is itself entrained by the external flow: it is thus of smaller
amplitude than that of the external flow. Hence, the flow in the internal (β = in) and
external (β = ex) fluids are described by the Stokes equations:

∇ · vβ = 0, ∇ · σβ = 0, β = in, ex. (1)

where σβ is stress tensor in the fluids. The Stokes equations are defined in the domains
bounded by the capsule membrane for β = in and by the capsule membrane and the
channel wall for β = ex. The inlet Γin and outlet Γout cross-sections of the channel are
assumed to be far from the capsule (10ℓ in the FOM model). The reference frame (O, x, y, z)
is fixed on the capsule center of mass O at each time step. For the velocity vector field vβ

and the pressure field pβ, we consider the following boundary conditions (note that the
boundary conditions include wall confinement effects, see [38] for more details):

• The flow perturbation induced by the capsule vanishes at Γin and Γout:

vex(x, t)→ v∞(x), when x ∈ Γin ∪ Γout, (2)

where v∞ is the Poiseuille flow velocity of the suspending fluid in the absence of
capsule. For a square channel we have the expression in expansion form

v∞(x, y) =

∞

∑
n=1,3,...

πV
n3

[
1− cosh(nπx/ℓ)

cosh(nπ/2)

]
sin(nπ(y/ℓ+ 1/2))

2

[
π4

96
−

∞

∑
n=1,3,...

tanh(nπ/2)
n5π/2

] . (3)
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• Uniform pressure at Γin and Γout:

pex(x, t) = 0, x ∈ Γin, (4)

pex(x, t) = ∆p(t) + ∆p∞, x ∈ Γout, (5)

where ∆p∞ is the undisturbed suspending pressure drop in the absence of capsule
and ∆p is the additional pressure drop due to the capsule.

• No slip boundary conditions on the channel wall W:

vex(x, t) = 0, for x ∈W (6)

• No slip boundary conditions on the capsule membrane C:

vin(x, t) = vex(x, t) =
∂

∂t
x(X, t), for x ∈ C (7)

where ∂
∂t x(X, t) is the membrane velocity at position x at time t, and X is the reference

position vector of the capsule membrane.
• The normal loading continuity indicates that the load q on the membrane is due to

the viscous traction jump[
σex(x)− σin(x)

]
· n = q, for x ∈ C (8)

where n is the outward unit normal vector.

As the membrane thickness is negligibly small compared to the capsule dimensions,
the membrane can be considered as a hyperelastic surface devoid of bending stiffness. The
in-plane deformation is then measured by the principal extension ratios λ1 and λ2, that
measure the in-plane deformation. Owing to the combined effects of hydrodynamic forces,
boundary confinement, and membrane deformability, the capsule can be highly deformed.
Consequently, the choice of membrane constitutive law is important. We consider the
Neo-Hookean (NH) constitutive law that models the membrane as an infinitely thin sheet
of a three-dimensional isotropic and incompressible material. It was indeed shown to
adequately model microcapsules with a cross-linked proteic membrane [23,24,39]. The
principal Cauchy in-plane tensions τi (i = 1, 2) (forces per unit arc length of deformed
surface curves) can be expressed as a function of the principal extension ratios:

τ1 =
Gs

λ1λ2

[
λ2

1 −
1

(λ1λ2)
2

]
, τ2 =

Gs

λ1λ2

[
λ2

2 −
1

(λ1λ2)
2

]
. (9)

2.2. Discrete Full Order Model (FOM)

The Fluid-Structure Interaction (FSI) problem is numerically modeled by coupling
the Boundary Integral Method (BIM) that solves the fluid Equations (2)–(8) with the
Finite Element Method (FEM) that solves the membrane mechanical problem [38,40] using
the Caps3D in-house code. The unknowns are the discrete displacement field {u} and
the discrete velocity field {v} at the nodes of the membrane mesh. The equation of
kinematics states that d

dt{u} = {v}. The forces exerted onto the membrane are computed
by the FEM. The deformation of the membrane is computed from the velocity vector field
obtained at the membrane nodes by solving the Stokes equations with the BIM, leading
to a nonlinear relation written in abstract form {v} = {N}({u}). For a given parameter
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vector θθθ = (θ1, θ2)
T , where θ1 = Ca and θ2 = a/ℓ, the time-continuous semi-discrete FSI

scheme reads in abstract form

d
dt
{u}(t) = {v}(t),

{v}(t) = {N}({u}(t), θθθ), t ∈ (0, Tf ],

{u}(0) = {0}, {v}(t) = {N}({0}, θθθ)

where {u}(t) and {v}(t) represent the discrete FE displacement and velocity fields at
continuous time t, and Tf is the final time. For time discretization, either a forward Euler
scheme or a second order Runge-Kutta scheme is used with a suitable constant time
step δt > 0. The Euler scheme reads

{ui+1} = {ui}+ δt {vi},
{vi+1} = {N}({ui+1}, θθθ),

{u0} = {0}, {v0} = {N}({0}, θθθ)

where {ui} and {vi} represent the discrete FE displacement and velocity fields at discrete
time ti,δ = i δt ≤ Tf . For second-order accuracy in time, a Runge-Kutta Ralston scheme
is used:

{ûi+2/3} = {ui}+ 2
3

δt {vi},

{v̂i+2/3} = {N}({ûi+2/3}, θθθ),

{ui+1} = {ui}+ δt
4

(
{vi}+ 3{v̂i+2/3}

)
,

{vi+1} = {N}({ui+1}, θθθ),

{u0} = {0}, {v0} = {N}({0}, θθθ).

Because of the explicit nature of the numerical schemes for the equation of kinematics, the
time step is subject to a Courant-Friedrichs-Lewy (CFL)-like stability condition

γ̇ δt < C
∆hC
ℓ

Ca, (10)

where γ̇ = V/ℓ, C > 0 is a constant and ∆hC is the typical mesh size (see [40]). In practice,
we first use small time steps, and tune them to be big enough but not too close to the
stability boundary. This process does not take too much time.

2.3. Design of Experiment, Database of FOM Results

Simulations of the FOM problem have been run varying the governing parameters in
the range [0; 0.2] for the capillary number Ca and [0.75; 1.2] for the confinement ratio a/ℓ.
For a/ℓ ≥ 0.95, the capsule is initially pre-deformed into an ellipsoid of semi-minor axis
equal to 0.9. This pre-deformation does not have any impact on the steady-state capsule
shape and is enough to avoid contacts between the capsule membrane and the channel
wall. The resulting numerical database, composed of Nc = 118 (Ca, a/l) samples (Figure 3),
contains the time-evolution of the three-dimensional position (or displacements) vectors of
the capsule membrane nodes. Only the configurations for which a steady-state shape has
been reached are retained. No steady state is found above the dotted red line of Figure 3,
the microcapsules exhibiting continuous elongation owing to the strain-softening behavior
of the membrane law [41].
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Figure 3. (a) Values of Ca and a/l included in the FOM database in the case of an initially spherical capsule with a
Neo-Hookean membrane flowing in a square-section microfluidic channel. The parameter domain where a steady capsule
deformation can be reached is delimited by the red dotted line. (b) Time evolution of capsule deformation along the
microfluidic channel shown as illustration for the 6 cases indicated with numbers in figure (a). The capsule is pre-deformed
into an ellipsoid when a/ℓ ≥ 0.95.

In the ROM model, we consider the capsule positions in the laboratory reference
frame (and not the reference frame centred on the capsule centre of mass as in the FOM
model). The capsule thus moves along the microchannel. For data generation, we pick
up time snapshot solutions at coarser discrete times ti = i ∆t, where ∆t = m δt for some
integer m ≥ 1. The total number of coarse discrete times is denoted Nt. Let {X}[n] and
{x}[n](ti) ∈ R3, n = 1, . . . , Nx, be the coordinates of node number n of the capsule mesh
in the reference configuration (at time t = 0) and at discrete time ti, i = 1, . . . , Nt. The
coordinates in the current configuration {x}(ti) are function of the (Ca, a/ℓ) parameter
value denoted θθθ j, j = 1, . . . , Nc. The database is thus stored as a datacube of 3D-space,

1D-time and 2D-parameter data. The displacement vector is then {u}
(
{X}[n], ti, θθθ j

)
=

{x}[n](ti) − {X}[n]. The velocity vector {v} is calculated by finite differences from the
position vector. Typically, for a standard capsule FOM simulation, Nx is of order 103 and
Nc of order 102. The time step ∆t is chosen such that Nt is of order 102.

3. Reduced Order Model (ROM)

Reduced order modeling aims at deriving a lightweight model of low-order dimen-
sion from solutions obtained by the FOM, while trying to keep the same order of accuracy.
There are many reasons for doing that. In particular, parameter exploration and sensitivity
analysis are made easier because of large speedups using the ROM compared to the pro-
hibitive FOM computational time. One can also imagine real-time parameter exploration
and visualization of capsule evolution.

3.1. Overview

We first give a general overview of the proposed data-driven model order reduction
methodology. The approach is classically made of an offline stage for the search of the
principal components and POD coefficient matrices of the FOM solutions, followed by an
online stage where a parameter is chosen and a low-order dynamical system is run to get
the solutions.
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1. Offline stage. We reduce the data dimensionality by means of a double POD basis for
space and parameter variables. The displacement field is represented as

{u}({X}, t, θθθ) =
Kx

u

∑
k=1

Kc
u

∑
ℓ=1

Akℓ(t) {Φr
u}k (ψu(θθθ))ℓ, (11)

where {Φr
u}k ∈ R3Nx are the spatial POD modes, ψu(θθθ) ∈ RKc

u the parameter modes
and Akℓ(t) scalar coefficients depending on time t. The truncation ranks are Kx

u and
Kc

u, respectively (the ’x’ superscript stands for ’space’ and the ’c’ superscript for
’configuration’). We use a similar representation for the velocity field:

{v}({X}, t, θθθ) =
Kx

v

∑
k=1

Kc
v

∑
ℓ=1

Bkℓ(t) {Φr
v}k (ψv(θθθ))ℓ. (12)

The determination of the double POD basis is achieved by singular value decomposi-
tion (SVD) from the datacube with different rearrangements of the data in stacked
matrix form. The truncation ranks Kx

u, Kc
u, Kx

v , Kc
v are expected to be rather small while

ensuring accuracy of the representations.

2. Online stage. For any query parameter θθθq in the parameter domain:

(a) Estimate the displacement field {u}({X}, t, θq) from expression (11). This
requires an interpolation process at θθθ = θθθq. For that, we decide to use a
diffuse approximation technique [18] that can be used for any parameter space
dimension;

(b) From the estimated displacement field {u}({X}, ti, θq) computed at different
instants ti ∈ [0, Tf ], compute a low-order reduced basis {φk}(θθθq), k = 1, . . . , mu
by singular value decomposition. We then get the low-order representations
of both displacements and velocities:

{u}({X}, t, θq) =
mu

∑
k=1

αk(t) {φk}(θθθq), (13)

{v}({X}, t, θq) =
mv

∑
k=1

ξk(t) {γk}(θθθq), (14)

(c) Manifold learning online stage: using diffuse approximation, we determine
the low-order manifold M that links displacements and velocities in the
(reduced-order) state space:

ξ =M(α, θθθq);

(d) Derivation of a low-order dynamical system: we then derive a lightweight
differential-algebraic dynamical system, easy to solve numerically: for θθθ = θθθq,
solve

dα

dt
= Q ξ(t),

ξ(t) =M(α(t), θθθq).

The high-dimensional displacement and velocity fields can then be recon-
structed according to (13) and (14).

In the next section, we give all the details of the ROM methodology.
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3.2. Offline Stage
3.2.1. Global Parametric Reduced Basis (GPRB)

This first step consists in computing a parametric reduced basis in the whole parameter
domain from the database of FOM results (see Section 2.3). For simplification reasons,
we use the subscript ϱ that can be either u or v to express displacements and velocity
respectively in the formulas.

Let Si
u ∈ M3Nx ,Nc(R) be the matrix of capsule displacement fields {u} and

Si
v ∈ M3Nx ,Nc(R) the matrix of the velocity fields {v} at time ti, i = 1, . . . , Nt (Figure 4a),

considering all the configurations θθθ j for j = 1, . . . , Nc of the database, i.e.

Si
u =

[
{u}

(
{X}, ti, θθθ1

)
, . . . , {u}

(
{X}, ti, θθθNc

)]
,

and
Si

v =
[
{v}

(
{X}, ti, θθθ1

)
, . . . , {v}

(
{X}, ti, θθθNc

)]
.

Then we stack all the matrices Si
ϱ for i = 1, . . . , Nt into a big matrix Sϱ ∈ M3Nx×Nt ,Nc(R):

Sϱ =


S1

ϱ

S2
ϱ
...

SNt
ϱ

 for ϱ = u, v.

We then apply SVD [42] and get:

Sϱ = Uϱ ΣSϱ
ΨT

ϱ , for ϱ = u, v, (15)

where Uϱ ∈ M3Nx Nt ,Nc(R), Ψϱ ∈ MNc(R) are semi-orthogonal and orthogonal matrices,
respectively, and ΣSϱ ∈ MNc(R) is the diagonal singular value matrix. The matrix Ψϱ of
discrete parameter modes can be truncated according to Kc

ϱ parameters, so we note:{
Ψr

ϱ =
[
(Ψϱ)1, . . . , (Ψϱ)Kc

ϱ

]
∈ MNc ,Kc

ϱ
(R),

with (Ψϱ)k ∈ MNc ,1(R) for k = 1, . . . , Kc
ϱ, and ϱ = u, v.

(16)

The orthogonality property ensures that
(

Ψr
ϱ

)T
Ψr

ϱ = IKc
ϱ
.

Time

Space

Parameters

(a)

Time

Space

Parameters

(b)

Figure 4. FOM data rearrangements for (a) parametric data set selection and (b) spatial data set selection
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3.2.2. Global Spatial Reduced Basis (GSRB)

Similarly, we build a global spatial reduced basis that captures the spatial data of cap-
sule displacements. Let T j

u ∈ M3Nx ,Nt(R) be the displacement matrix and T j
v the velocity

matrix for the j-th configuration θθθ j, for j = 1, . . . , Nc at all time instants ti, i = 1, . . . , Nt
(Figure 4b):

T j
u =

[
{u}

(
{X}, t1, θθθ j

)
, . . . , {u}

(
{X}, tNt , θθθ j

)]
,

and
T j

v =
[
{v}

(
{X}, t1, θθθ j

)
, . . . , {v}

(
{X}, tNt , θθθ j

)]
.

Then we define the global matrix Tϱ ∈ M3Nx ,Nt×Nc(R) that horizontally gathers all the

matrices T j
ϱ for j = 1, . . . , Nc and ϱ = u, v, respectively:

Tϱ =
[

T1
ϱ , T2

ϱ , . . . , T Nc
ϱ

]
, for ϱ = u, v.

The SVD decomposition is applied on Tϱ to get

Tϱ = Φϱ ΣTϱ VT
ϱ , for ϱ = u, v, (17)

where Φϱ ∈ M3Nx (R), Vϱ ∈ MNc Nt ,3Nx (R) are orthogonal and semi-orthogonal matrices,
respectively, and ΣSϱ ∈ M3Nx (R) is the diagonal singular value matrix with singular
values organized in decreasing order. We can also apply a spatial basis truncation at a
range of Kx

ϱ for a specified accuracy threshold. The reduced spatial POD basis is stored in
the matrix:

Φr
ϱ =

[
{ϕϱ}1, . . . , {ϕϱ}Kx

ϱ

]
∈ M3Nx ,Kx

ϱ
(R) (18)

with the orthogonality property
(

Φr
ϱ

)T
Φr

ϱ = IKx
ϱ
, ϱ = u, v.

3.3. Data Dimensionality Reduction

Once the POD modes of Sϱ and Tϱ for the displacement fields (ϱ = u) and the velocity
fields (ϱ = v) are computed, one can summarize (approximate) capsule displacement and
velocity fields of the database at any discrete time ti (i = 1 . . . , Nt) as

{u}
(
{X}, ti, [θθθ1, . . . , θθθNc ]

)
≈ Φr

u A(ti) (Ψr
u)

T ∈ M3Nx ,Nc(R), (19)

{v}
(
{X}, ti, [θθθ1, . . . , θθθNc ]

)
≈ Φr

v B(ti) (Ψr
v)

T ∈ M3Nx ,Nc(R), (20)

where A(ti) ∈ MKx
u ,Kc

u(R) and B
(
ti) ∈ MKx

v ,Kc
v(R) are some coefficient matrices depending

on time ti. If the approximation is chosen as the orthogonal projection over the vector
spaces spanned by the POD modes, the coefficient matrices are computed as follows for
i = 1 . . . , Nt:

A(ti) = (Φr
u)

T︸ ︷︷ ︸
Kx

u×(3Nx)

{u}
(
{X}, ti, [θθθ1, . . . , θθθNc ]

)
︸ ︷︷ ︸

(3Nx)×Nc

Ψr
u︸︷︷︸

Nc×Kc
u

, (21)

B(ti) = (Φr
v)

T︸ ︷︷ ︸
Kx

v×(3Nx)

{v}
(
{X}, ti, [θθθ1, . . . , θθθNc ]

)
︸ ︷︷ ︸

(3Nx)×Nc

Ψr
v︸︷︷︸

Nc×Kc
v

. (22)

The outputs of the offline stage are respectively the POD matrices Φr
u, Φr

v, Ψr
u, Ψr

v and
the small matrices A(ti), B(ti), i = 1, . . . , Nt. The next online stage will operate on the
summarized data (19), (20) with coefficients matrices (21), (22). The algorithm of the offline
phase is summarized in Algorithm 1.
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Algorithm 1 Offline phase

Require: database of θθθk for k = 1, . . . , Nc, truncations Kc
ϱ, number of snapshots Nt.

for i← 1, . . . , Nt do
if (ϱ = u) then

Si
u ←

[
{u}

(
{X}, ti, θθθ1

)
, . . . , {u}

(
{X}, ti, θθθNc

)]
; Su ← [Su; Si

u];
else

Si
v ←

[
{v}

(
{X}, ti, θθθ1

)
, . . . , {v}

(
{X}, ti, θθθNc

)]
; Sv ← [Sv, Si

v];
end if

end for
for j← 1, . . . , Nc do

if (ϱ = u) then
T j

u ←
[
{u}

(
{X}, t1, θθθ j

)
, . . . , {u}

(
{X}, tNt , θθθ j

)]
; Tu ← [Tu, T j

u];
else

T j
v ←

[
{v}

(
{X}, t1, θθθ j

)
, . . . , {v}

(
{X}, tNt , θθθ j

)]
; Tv ← [Tv, T j

v];
end if

end for
Φϱ ← SVD(Sϱ), Ψϱ ← SVD(Tϱ), for ϱ← u, v;
for i = 1, . . . , Nt do

A(ti)← (Φr
u)

T {u}
(
{X}, ti, [θθθ1, . . . , θθθNc ]

)
Ψr

u;
B(ti)← (Φr

v)
T {v}

(
{X}, ti, [θθθ1, . . . , θθθNc ]

)
Ψr

v;
end for

3.4. Online Stage: Search for an Approximate Solution at a Query Configuration θθθq

In the online stage, a user will ask for an approximate solution at a new (query)
configuration θθθ = θθθq that has not been already computed by the FOM solver or is not
stored in the database. Ingredients of the online stage will be: (i) the data summarization
of the previous offline stage; (ii) a first estimation of the spatio-temporal solution at θθθ = θθθq;
(iii) the computation of a low-dimensional spatial reduced basis suitable for θθθ = θθθq; (iv) the
construction of a manifoldM that links variables of displacements and velocities in the
low-order state space to solve the equation of membrane mechanics; (v) finally, the building
of a low-order differential-algebraic (DAE) system of equations that defines the reduced-
order model. Substeps (ii) and (iv) will make use of diffuse approximation (DA) as a
universal approximator for multivariate functions.

3.4.1. First Estimation of the Solutions at θθθ = θθθq

As an introduction, let us assume that, from the parameter sampling {θθθ1, . . . , θθθNc},
we consider a polynomial Lagrange interpolation with Lagrange polynomials denoted by
Li(θθθ) such that the Lagrange property

Li(θj) = δij, 1 ≤ i, j ≤ Nc

is fulfilled (δij is the standard Kronecker symbol). Let us denote by
L(θθθ) = (Lj(θθθ))j=1,...,Nc ∈ RNc the vector that stores the Lagrange polynomials. Then

I{u}
(
{X}, ti, θθθq

)
:= {u}

(
{X}, ti, [θθθ1, . . . , θθθNc ]

)
L(θθθq) ∈ R3Nx

is an interpolated displacement field at parameter θθθ = θθθq and discrete time t = ti. One can
of course do the same for the velocity field.

Unfortunately, Lagrange polynomial interpolation is not suitable for parameter spaces
of arbitrary dimension because of the curse of dimensionality and because it may suffer
from instability issues (Runge phenomenon). Rather than using polynomial interpolation,
we propose to use a Diffuse Approximation (DA) technique [18,29] which is an approxi-
mation method based on local low-order polynomial reconstruction (of order one or two)
using a compactly-supported kernel function and weighted least squares. The DA method
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is known to be a robust and reliable approach which is less sensitive to the location of the
sampling points. Moreover, it can be applied to multivariate functions of arbitrary dimen-
sions, which is interesting for larger or more general parameter spaces. It is particularly
suited for the current problem, for which the sampling is performed on a Cartesian grid. It
may fail in the occurrence of local point alignment within the cloud points, which does not
occur in the present study. The accuracy of the DA method may slightly decrease close to
the boundary of the domain, the number of neighboring points being reduced.

To estimate the displacement field for θθθ = θθθq, we look for a vector ψu(θθθq) ∈ RKc
u

such that
{u}({x}, ti, θθθq) = Φr

u A(ti)ψu(θθθq) (23)

returns an approximation of the displacement field at θθθ = θθθq. Similarly for the velocity
field, we search for a vector ψv(θq) ∈ RKc

v that gives

{v}({x}, ti, θθθq) = Φr
v B(ti)ψv(θθθq). (24)

Each vector ψϱ(θθθq) ∈ RKc
ϱ can be locally approximated by

Ψϱ(θθθq) = Aϱ p(θθθq), for ϱ = u, v, (25)

where the matrix Aϱ ∈ MKc
ϱ ,m(R) (to be determined) is the approximation coefficient

matrix and p
(
θθθq
)
∈ Rm is a vector of independent polynomial functions, wherep(θθθ) =

[
1 Ca a/ℓ

]T
, m = 3 for first order DA,

p(θθθ) =
[
1 Ca a/ℓ Ca(a/ℓ) (Ca)2 (a/ℓ)2

]T
, m = 6 for second order DA.

(26)

To approximate ψϱ(θθθq), let us consider a neighborhood S (θθθq) centered on θθθq contain-
ing M neighboring points (Figure 5a). It is an ellipse of equation(

θ1 − (θθθq)1
)2

+ r̃2(θ2 − (θθθq)2
)2

= R2

where r̃ is fixed (equal to 1.9 in Figure 5a) and R is chosen such that the ellipse contains M
points (M being chosen by the operator). In other words, the distance between θθθ = (θ1, θ2)

T

and θθθq is

d =
((

θ1 − (θθθq)1
)2

+ r̃2(θ2 − (θθθq)2
)2
) 1

2 /R. (27)

The compactly supported Wendland weight function shown in Figure 5b is classically used.
It has appropriate high-order approximation properties ([43]):{

w(d) = 2 d3 − 3 d2 + 1, d ≤ 1,
0, otherwise.

(28)

Diffuse approximation consists in minimizing the weighted least square problem

min
Aϱ∈MKc

ϱ ,m(R)
Jθθθq

(
Aϱ

)
:=

1
2 ∑

θθθ∈S (θθθq)

w(d(θθθ))
∥∥∥Aϱ p(θθθ)− [Ψr

ϱ(θθθ)]
T
∥∥∥2

RKc
ϱ

(29)

where [Ψr
ϱ(θθθ)]

T is the truncated matrix of modes that correspond to couples θθθk,
k = 1, . . . , Nc. The solution Aϱ (ϱ = u, v) of the weighted least square problem (29) is then

Aϱ = (Ψr
ϱ)

TWP
(
PTWP

)−1
∈ MKc

ϱ ,m(R) (30)
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where the matrix P ∈ MNc ,m(R) and the diagonal matrix of weightsW ∈ MNc(R) are
defined as

P =

 p(θθθ1)
T

...
p(θθθNc)

T

 andW =


w1 0 · · · 0

0 w2
...

...
. . .

0 · · · wNc

. (31)
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Figure 5. (a) DA elliptical region of interest (dashed line) defined around the point θθθq = (Ca = 0.055, a/ℓ = 0.95) in the
parametric space with M = 10 neighbors; (b) Weight function w(d).

3.4.2. Construction of a Low-Order Reduced Basis Suitable for θθθ = θθθq, Data Generation

From (23) and (24), one can easily generate some pseudo-snapshot matrices U (θθθq)
and V(θθθq) that gather the estimated displacements and velocities at Nt discrete times,
respectively: U (θθθq) =

[
{u}

(
{X}, t1, θθθq

)
, . . . , {u}

(
{X}, tNt , θθθq

)]
,

V(θθθq) =
[
{v}

(
{X}, t1, θθθq

)
, . . . , {v}

(
{X}, tNt , θθθq

)]
.

(32)

One can then apply a new SVD decomposition of matrices U (θθθq) and V(θθθq) respec-
tively to get spatial POD modes {φk}(θθθq) ∈ R3Nx , k = 1, . . . , mu for {u} and velocity POD
modes {γk}(θθθq) ∈ R3Nx , k = 1, . . . , mv for {v}.

POD
(
U (θθθq)

)
→ {φ1}(θθθq), . . . , {φmu}(θθθq) (33)

POD
(
V(θθθq)

)
→ {γ1}(θθθq), . . . , {γmv}(θθθq) (34)

where mu and mv are the truncation ranks of displacement and velocity modes determined
in the next section on numerical experiments. One can then search the displacement and
velocity fields at θθθ = θθθq as

{u}
(
{X}, t, θθθq

)
=

mu

∑
k=1

αk(t){φk}
(
θθθq
)
, (35)

{v}
(
{X}, t, θθθq

)
=

mv

∑
k=1

ξk(t){γk}
(
θθθq
)
. (36)



Entropy 2021, 1, 1 14 of 25

By denoting

Φ(θθθq) =
[
{φ1}

(
θθθq
)
, . . . , {φmu}

(
θθθq
)]
∈ M3Nx,mu(R), (37)

Γ(θθθq) =
[
{γ1}

(
θθθq
)
, . . . , {γmv}

(
θθθq
)]
∈ M3Nx,mv(R) (38)

and α(t) = [α1(t), . . . , αmu(t)]
T ∈ Rmu , ξ(t) = [ξ1(t), . . . , ξmv(t)]

T ∈ Rmv , we have the
vector formulas

{u}
(
{X}, t, θθθq

)
= Φ(θθθq) α(t), {v}

(
{X}, t, θθθq

)
= Γ(θθθq) ξ(t). (39)

The mode matrices Φ(θθθq) and Γ(θθθq) are assumed to be orthonormal (w.r.t the natural
Euclidean inner product), so we have [Φ(θθθq)]T Φ(θθθq) = Imu and [Γ(θθθq)]T Γ(θθθq) = Imv .

3.4.3. Toward a Physically Consistent Dynamical Reduced-Order Model

Consider now the forward Euler scheme on the FSI system with a ROM time step
δtROM > 0: at time ti+1,ROM = ti,ROM + δtROM, the numerical scheme is

{ui+1} = {ui}+ δtROM {vi}, (40)

{vi+1} = {N}({ui+1}, θθθq). (41)

Let us emphasize that the equation of local mechanical equilibrium depends on the param-
eter θθθq. For the reduced-order model, we would like to have a similar algebraic structure to
(40), (41) but formulated as a low-dimensional system. If {ui} and {vi} are searched in the
form {ui} = Φ(θθθq) αi and {vi} = Γ(θθθq) ξi, respectively, Equation (40) becomes

Φ(θθθq) αi+1 = Φ(θθθq) αi + δtROM Γ(θθθq) ξi.

By multiplying by [Φ(θθθq)]T on the left, we get the system of mu equations

αi+1 = αi + δtROM Q(θθθq) ξi, (42)

where Q(θθθq) = [Φ(θθθq)]TΓ(θθθq). Equation (41) is replaced by

Γ(θθθq) ξi+1 = {N}(Φ(θθθq) αi+1, θθθq).

By multiplying by [Γ(θθθq)]T on the left, we get

ξi+1 =M(αi+1, θθθq)

where
M(αi+1, θθθq) = [Γ(θθθq)]

T{N}(Φ(θθθq) αi+1, θθθq) ∈ Rmv . (43)

3.4.4. Manifold Learning

Because of nonlinear terms, the direct computation ofM(αi+1, θθθq) in (43) requires
high-dimensional computations, which makes the ROM irrelevant from a performance
point of view. To “identify” a low-order manifold M, we rather adopt a data-driven
approach based once again of diffuse approximation. We link the entry data αD

k (t
i),

k = 1, . . . , mu, i = 1, . . . , Nt to the output data ξD
k (ti), k = 1, . . . , mv, i = 1, . . . , Nt (’D’

stands for ’data’). For that, one can compute the orthogonal projections of the pseudo-
snapshots over the POD bases, leading to the formulas

αD
k (t

i) = ⟨{u}({X}, ti, θθθq), {φk}(θθθq)⟩

and
ξD(ti) = ⟨{v}({X}, ti, θθθq), {γk}(θθθq)⟩
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at instants ti = i∆t. Manifold learning consists in achieving a (nonlinear) regression
method that links entry and output data. We are looking for a manifold representation
ξ =M(α, θθθq) in the form

ξk = p(α)Tak, k = 1, . . . , mv (44)

where p(α) is the vector made of monomials in α of order zero and one, and ak ∈ Rmu+1 is
a vector of coefficients to be determined from the data. This corresponds to a local linear
embedding process. For each k = 1, . . . , mv, one looks for a coefficient vector ak(t) ∈ Rmu+1

solution of the weighted least square problem

ak(t) = arg min
a∈Rmu+1

1
2

Nt

∑
i=1

w
(
|t− ti|

R

)(
p(αD(ti))T a− ξD

k (ti)
)2

(45)

where t ∈ [0, Tf ], w = w(d) is the weight function defined in Figure 5b and d = |t−ti |
R . This

returns a regression function

ξk = ξk(t, α(t)) = p(α(t))T ak(t). (46)

3.4.5. Low-Order Dynamical Reduced Order Model

The resulting time-discrete reduced-order model is then

ti+1,ROM = ti,ROM + δtROM, (47)

αi+1 = αi + δtROM Q(θθθq) ξi, (48)

ξ i+1
k = p(αi+1)T ak(ti+1,ROM) ∀k ∈ {1, . . . , mv}. (49)

High-dimensional displacement and velocity fields can be reconstructed as follows:

{u}
(
{X}, ti+1,ROM, θθθq

)
= Φ(θθθq) αi+1, {v}

(
{X}, ti+1,ROM, θθθq

)
= Γ(θθθq) ξi+1.

The online stage of the reduced-order model is summarized in Algorithm 2.

Algorithm 2 Online phase

Require: choose a query parameter θθθq, choose a time step δtROM > 0.
Initialization: t = t0,ROM = 0, α0 = 0, ξ0 = ξD(0);
Compute Ψu(θθθq) and Ψv(θθθq) from the diffuse approximation approach;
for i = 1 . . . , Nt do
{u}({x}, ti, θθθq)← Φr

u A(ti)Ψu(θθθq);
{v}({x}, ti, θθθq)← Φr

v B(ti)Ψv(θθθq);
end for
U (θθθq)← [{u}({x}, t1, θθθq), . . . , {u}({x}, tNt , θθθq)];
V(θθθq)← [{v}({x}, t1, θθθq), . . . , {v}({x}, tNt , θθθq)];
Compute Φ(θθθq), Γ(θθθq), Q(θθθq), αD(ti) and ξD(θθθi), i = 1, . . . , Nt;
while t < Tf do

t← t + δtROM; ti+1,ROM = ti,ROM + δtROM;
αi+1 = αi + δtROM Q(θθθq)ξi;
Compute ak(ti+1,ROM), k = 1, . . . , mv from the diffuse approximation approach;
ξ i+1

k = p(αi+1)T ak(ti+1,ROM);
If needed, reconstruct the high-dimensional displacements/velocity fields:
{u}

(
{X}, ti+1,ROM, θθθq

)
= Φ(θθθq) αi+1;

{v}
(
{X}, ti+1,ROM, θθθq

)
= Γ(θθθq) ξi+1;

end while
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4. Numerical Experiments
4.1. Study Case

We consider a capsule flowing in a square-base microchannel of base edges of length
2ℓ. We want to capture the capsule dynamics for capillary numbers Ca belonging to the
interval [0.005, 0.2] and aspect ratios a/ℓ in the interval [0.75, 1.2] for which a steady state
shape is reached. The Caps3D code [38,40] is then used as FOM solver. The comparison
of the FOM results with experimental ones using a square-base cylinder have been thor-
oughly described in other previous studies (see for example [23,24,27,39] from A.V. Salsac’s
research team). The total non-dimensional time for simulation is T = 20. For any capillary
number and aspect ratio, the capsule is discretized with the same mesh resolution and
connectivity, consisting of Nx = 2562 nodes (corresponding to 1280 triangular elements),
with a capsule mesh size ∆hC = 0.075 a (see Figure 6). A second-order RK2 Ralston scheme
is used for time integration. The dimensionless time step is γ̇δt = 5 · 10−4 for Ca > 0.02
and γ̇δt = 10−4 for Ca ≤ 0.02 .

Figure 6. Three-dimensional representation of a capsule flowing in a square microchannel at T = 0.

4.2. FOM Result Database Generation

A database of FOM results is generated from a sampling of the parameter domain (see
Figure 7). It is observed that configurations for which a shape steady state is reached before
the non-dimensional final time of 20 correspond to couples (Ca, a/ℓ) in the parameter
plane below the dashed red line of Figure 7. Using a Cartesian parameter sampling with
step sizes of 0.01 in Ca and 0.05 in a/ℓ, plus few additional points at Ca = 0.005, we get a
database made of Nc = 118 configurations. From Caps3D FOM solutions, we pick up time-
snapshot solutions every time step ∆t = 0.2 in non-dimensional time scale, corresponding
to Nt = 100. This makes a datacube made of 2× 3Nx NcNt ≈ 1.81 · 108 double precision
float numbers taking about 1.45 GB of memory.

Clustering Strategy

For the sake of memory storage complexity, we adopt a strategy of data clustering with
two weakly-overlapping clusters chosen manually, represented in Figure 7. For each cluster,
a data dimensionality reduction is done following the offline-stage algorithm presented in
Section 3. That means that two families of reduced-order models are actually computed. In
the online stage, for a new query parameter vector θθθq, one has to determine the cluster of
belonging.
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Figure 7. Design of computer experiment with sampling in the admissible parameter domain. The
parameter domain is splitted up into two overlapping clusters: cluster 1 (squares), cluster 2 (crosses)
and overlapping region (mixed squares and crosses)

4.3. Elements of Analysis—Accuracy Criteria

In order to measure the approximation error generated by the data dimensionality
process, we introduce the classical Relative Information Content (RIC) (see for example [9]),
which is computed as:

RIC(K) =

r

∑
k=K+1

σ̃2
k

r

∑
k=1

σ̃2
k

, K = 1, . . . , r, (50)

where σ̃k is the k-th singular value from the SVD decomposition, r is the rank of the matrix
of study (Sϱ or Tϱ) and K is the truncation rank. A supplementary indicator is the ratio

K 7→ σ̃K
σ̃1

(51)

that gives an idea of the decay rate of the singular values.
The second criterion directly measures the error between the shape predicted by

the ROM and the shape computed by the FOM. This is achieved by using the so-called
Modified Hausdorff distance dMH [44] that we normalize by the capsule radius a. The
modified Hausdorff distance computes the distance between two finite sets F and G of a
normed space of norm ∥.∥, and is defined as

dMH(F ,G) = max(dh(F ,G), dh(F ,G)), (52)

with
dh(F ,G) = 1

NF
∑

pF∈F
ds(pF ,G) (53)

where NF is the number of points in the set F and ds(pF ,G) is the distance between pF
and the set G, which is defined as

ds(pF ,G) = min
pG∈G

∥pF − pG∥. (54)
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4.4. Dimensionality Reduction Analysis

A singular value decomposition analysis is first performed on the matrices Su and
Sv, and then on Tu and Tv. In Figure 8a, we plot the indicator (1− RIC) (see (50)), as a
function of the truncation rank K, for Su and Sv. What can be seen is that (1−RIC) rapidly
converges towards the value 0 in all cases. An expected (1− RIC) of 10−7 is reached for a
truncation rank Kc

u (resp. Kc
v) of 7 for the displacement (resp. 23 for the velocity). Similarly

in Figure 8b, we plot the indicator (1− RIC) for Tu and Tv. The number of modes Kx
u

(resp. Kx
v ) needed to reach the threshold of 10−7 is 7 for the displacement (resp. 56 for the

velocity).
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Figure 8. Behaviour of the relative information content of the matrices Su and Sv (a) and Tu and Tv (b) shown in the form
(1− RIC) as a function of the truncation rank K. The horizontal red line corresponds to (1− RIC) = 10−7.

As supplementary indicators, the singular values σ̃K normalized by σ̃1 are plotted in
Figure 9a (resp. Figure 9b) for both matrices Su and Sv (resp. Tu and Tv) in log10 scale. One
can first observe a lower decay rate for the velocity fields compared to the displacements,
meaning a greater information complexity for the velocity. Secondly, the decay rate is lower
for the global spatial mode than for the parametric modes, indicating a larger entropy of
information on the whole parameter domain. That justifies the derivation of suitable lower
order spatial basis at a query parameter θθθq in the online stage.

At the beginning of the online stage, for a query parameter θθθq, an interpolated ap-
proximate solution is computed thanks to a diffuse approximation reconstruction. This
allows us to get pseudo-snapshots in time for both displacements and velocities, stored in
matrices U (θθθq) and V(θθθq), respectively. We assess the RIC for the two matrices, from an
experimental parameter vector θθθq = (0.10, 0.90). The comparison of the time evolution of
POD coefficients between FOM and ROM models shows a high accuracy (see Figure 10).
and Figure 11 shows that the RIC rapidly converges to 1. An expected RIC greater than
1− 10−7 returns a truncation rank mu (resp. mv) of value 3 (resp. 8).
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Figure 9. (a) Parametric normalized singular values σ̃K/σ̃1 for Su and Sv; (b) Spatial normalized singular values σ̃K/σ̃1 for
Tu and Tv.
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Figure 10. FOM versus ROM comparison of the time evolution of the first three displacement (a) and velocity (b) POD
coefficients for the query parameter θθθq = (0.10, 0.90).
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Figure 11. Online stage: behaviour of the relative information content of the matrices U (θθθq) and
V(θθθq) shown in the form (1− RIC) for query parameter θθθq = (0.10, 0.90). The red line corresponds
to (1− RIC) = 10−7.
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4.5. ROM Accuracy Analysis

The reduced-order model algorithm is applied with the following parameters and
options:

- For global POD modes: Kx
u = 40, Kc

u = 40, Kx
v = 50, Kc

v = 50;
- For DA in (25), (30): local second order polynomial reconstruction, M = 12;
- For local POD modes: mu = 10, mv = 10;
- For DA in (45), (46): local first order polynomial reconstruction, R = 2∆t.

The resulting time-evolution of the three-dimensional capsule shape, that is re-
constructed with the ROM model, is illustrated in Figure 12 for the query couple
θθθq = (0.10, 0.90). The steady-state is reached before γ̇t = 3, which explains that the
capsule shape is the same for γ̇t = 3, 6, 9.

Figure 12. Three-dimensional shape of a capsule flowing in a square microchannel, reconstructed with the ROM model for
θθθ = (Ca = 0.10, a/ℓ = 0.90) and shown at γ̇t = 0, 0.4, 3, 6, 9. The capsule initial shape is shown in transparency.

We now focus on the accuracy analysis of the proposed reduced-order model. The
methodology for error measurement is based on a ’Leave-one-out’ cross-validation proce-
dure, where each sample FOM solution is taken out from the database and then evaluated
by the ROM model and compared to the original FOM one. The error is measured using
the modified Hausdorff distance calculated on the capsule shapes at different instants.

Figure 13 shows the heat maps of the FOM-vs-ROM error computed over the parame-
ter space at the time instants γ̇t = 1, 2, 4 and 8. Figure 13 shows that the predicted ROM
solutions are very accurate with a mean relative error below 0.2%. The maximum relative
errors are below 3.5%: they occur along the boundary of the parameter domain, which is
the only location where the predictions slightly lose in accuracy. This is probably due to a
lack of well-distributed neighbors close to the boundaries, which affects the accuracy of
the DA reconstruction (off-centre approximation). One can also notice that the accuracy of
predictions decreases in time.
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a) b)

c) d)

Figure 13: Heat maps of the normalized Hausdorff Distance dMH/a of configuration prediction shapes over
the parametric space at different transient states: a) γ̇t = 1; b) γ̇t = 2; c) γ̇t = 4; and d) γ̇t = 8. Note that
the maximum error is 3.26% in d).
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Figure 13. Heat maps of the normalized Hausdorff Distance dMH/a of configuration prediction shapes over the parametric
space at different transient states: (a) γ̇t = 1; (b) γ̇t = 2; (c) γ̇t = 4; and (d) γ̇t = 8. The maximum error is 3.26% in (d).

The capsule cross-section profiles predicted by the ROM (red dots) are compared to
the reference FOM solutions (solid black line) in Figure 14 at different time instants (γ̇t = 0,
1, 2 and 8) for the 6 configurations, selected as illustration in Figure 3. We observe that the
reduced-order model returns very accurate solutions in terms of capsule shape as well-as
axial position in the channel.

From the computing performance point of view, ROM-vs-FOM speedups are observed
to be of order 10,000 with almost the same accuracy, making interactive exploration and
real-time visual rendering possible.

4.6. CapsuleExplorer: Capsule Visualization/Exploration Software

We have developed an in-house software tool CapsuleExplorer based on the pro-
posed ROM to provide the three-dimensional microcapsule deformation/evolution at any
time γ̇t and for any θθθq in the admissible parameter domain. CapsuleExplorer allows
one to select a particular couple (Ca, a/ℓ) in the admissible parameter domain, then to
visualize the capsule dynamics between initial and final times, either in three dimensions
or two dimensions with longitudinal or transversal cross-sectional view. The ROM high
performance feature allows real-time exploration/visualization. CapsuleExplorer has
been developed as a web application. Figures 15 and 16 show some screenshots of the
graphics user interface, which will be useful for applications such as identifying the capsule
wall mechanical properties through comparison with experimental results.
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Figure 14: Comparison between the ROM (red dots) and FOM solutions (black line) of the capsule cross-
section shapes in the plane y = 0 at the times γ̇t = 0, 1, 2 and 8 respectively, for the 6 parameter couples
selected in Figure 3. The horizontal lines correspond to the channel walls.
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Figure 15: CapsuleExplorer: a) parameter domain exploration; b) dynamic 3D capsule view.
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Figure 15: CapsuleExplorer: a) parameter domain exploration; b) dynamic 3D capsule view.
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Figure 15. CapsuleExplorer: (a) parameter domain exploration; (b) dynamic 3D capsule view.
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Figure 16: CapsuleExplorer: a) dynamic 2D cross-section longitudinal view; b) dynamic 2D cross-section
transversal view.
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Figure 16. CapsuleExplorer: (a) dynamic 2D cross-section longitudinal view; (b) dynamic 2D cross-section transversal view.
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5. Concluding Remarks

In this paper, we have presented an innovative data-driven reduced-order model that
enables the dynamics of a deformable membrane flowing in a microchannel, from its initial
state to the steady shape state. The ROM is built to be valid in a large domain of interest in
the parameter plane (Ca, a/ℓ). Our FSI-ROM model first starts with an offline procedure
to build two global orthonormal bases (space+parameter) that return good approximations
of the FOM solutions over the whole parameter domain. The rather small truncation
ranks already lead to an appreciable data dimensionality reduction, which is important for
complexity and memory storage purposes.

The online stage consists in predicting the space-time solution for any query cou-
ple θθθq = (Ca , a/ℓ) in the parameter domain. In a first step, we determine a low-order basis
for both the displacement and velocity vector variables. This is achieved by the use of dif-
fuse approximation that returns an interpolated space-time solution at the query vector θθθq.
Then an SVD analysis provides a suitable low-order spatial basis for final construction
of the ROM in the second step. The physically-based ROM is made of the kinematics
equation and the law of membrane quasi-static equilibrium in their reduced formulation.
The unknown variables become the POD coefficient vectors of displacement and velocity
fields. The reduced quasi-static equilibrium law is determined once again by the use of a
diffuse approximation. The manifold learning is achieved by the use of time-snapshot data
of the interpolated solution at θθθ = θθθq.

Numerical experiments confirm the efficiency of the method. ROM-vs-FOM speedups
are observed to be of order 10,000 with almost the same accuracy (with less than a 0.3%
error measured in terms of Hausdorff distance inside the parameter domain). Larger errors
are encountered at the boundary of the parameter domain, but they still remain reasonable
(up to 3.3% in Hausdorff distance). This work tends to show that model-order reduction
techniques are complementary and valuable tools for the rapid design and optimization of
capsules in healthcare engineering such as drug delivery through blood vessels.

The case of more complex FSI configurations such as the deformation of capsules
flowing through a bifurcated microchannel will be investigated in a future work.
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