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K-partitioning with imprecise
probabilistic edges

Tom Davot, Sébastien Destercke, David Savourey

Abstract Partitioning a set of elements into disjoint subsets is a common
problem in unsupervised learning (clustering) as well as in networks (e.g., so-
cial, ecological) where one wants to find heterogeneous subgroups such that
the elements within each subgroup are homogeneous. In this paper, we are
concerned with the case where we imprecisely know the probability that two
elements should belong to the same partition, and where we want to search
the set of most probable partitions. We study the corresponding algorith-
mic problem on graphs, showing that it is difficult, and propose heuristic
procedures that we test on data sets.

1 Introduction

Partitioning a set of elements into heterogeneous groups such that elements
within each group are as homogeneous as possible is a common task. It is
at the very core of unsupervised learning and clustering problems, as well as
when one considers networks of different kinds (e.g., social, voting, . . . ).

A natural way to encode the relations existing between elements is through
graphs, where the presence of an edge indicates that elements should be
grouped together. However, the existence of such a link may be subject to
various uncertainties. For instance, if one thinks of grouping persons (e.g., in
parliament) voting in the same way, it may be that we rarely observe two
persons voting at the same time, or that two persons do not always have the
same behaviour (sometimes voting in the same way, sometimes not). Impre-
cise probabilities offer a rich and natural model to describe this uncertainty.

However, once one has modelled link uncertainty by imprecise probabil-
ities, it remains to infer what are the more likely clusters. In this paper,
we study the problem of extracting possibly optimal clusters from imprecise
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probabilistic graphs. We show that solving this problem exactly is NP-hard,
and propose some heuristics. While there are existing approaches trying to
extract partial clusters from imprecise probabilistic knowledge (Denoeux and
Kanjanatarakul, 2016; Masson et al., 2020), to our knowledge this is the first
paper to view the problem as a robust decision-making one.

2 Notations and problem definition

Let � be a simple loopless graph. We denote + (�) and � (�) the set of vertices
and edges of �, respectively (or simply + or � if no ambiguity occurs). The
complement graph of �, denoted �̄ is the graph defined by + (�̄) = + (�) and
� (�̄) = {DE | DE ∉ � (�)}. A cluster graph is a disjoint union of complete
graphs 1, called cliques. A :-cluster graph is a cluster graph that contains :
non-empty connected components. Let � be a complete graph, a :-partition
of � is a :-cluster subgraph � ′ of � such that + (�) = + (� ′).

In this paper, an imprecise probability ? is an interval [?, ?] ⊆ [0, 1] of

probabilities, and ? is called precise if ? = ?. An imprecise probabilistic graph
(�,P) is a graph with a function P that associates to each edge in the graph
an imprecise probability. If DE is an edge, we denote ?

DE
and ?DE the lower and

upper bounds of P(DE), respectively. The probability bounds of an absence
of an edge can be deduced by duality (i.e. [1 − ?DE , 1 − ?DE ]). ?DE being the

marginal probability DE is an edge (and 1− ?DE that it is not), we only assume
[?
DE
, ?DE ] ⊆ [0, 1].

A probability realisation ' : � (�) ↦→ [0, 1] of P is a function that asso-
ciates to each edge DE a probability within [?

DE
, ?DE ]. We denote RP the

set of probability realisations of P. Let � ′ be a subgraph of � and ' ∈ RP
be a probability realisation. The probability of � ′ under ', denoted '(� ′)
corresponds to

'(� ′) =
∏

DE∈� (�′)
'(DE)

∏
DE∉� (�′)

1 − '(DE).

Let �1 and �2 be two vertices :-partitions of �. We say that �1 is certainly
more probable than �2, denoted by �1 �? �2, if

∀' ∈ RP , '(�1) − '(�2) > 0.

Let �1/�2 denote the following value

�1/�2 =
∏

DE∈� (�1)\� (�2)

?
DE

1 − ?DE

∏
DE∈� (�2)\� (�1)

1 − ?DE
?
DE

.

1 A complete graph is a simple graph where every pair of vertices is connected.
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Notice that if an edge DE belongs (resp. does not belong) to both �1 and
�2, then the factor '(DE) (resp. 1 − '(DE)) is present on both sides of the
substraction. Thus, to verify if �1 is certainly more probable than �2, we
only need to consider edges in � (�) \ (� (�1) ∩� (�2)). Moreover, by duality
'(�1) − '(�2) is minimum if for every edge DE ∈ � (�1) \ � (�2) (resp.
DE ∈ � (�2) \ � (�1)), we have '(DE) = ?DE (resp. '(DE) = ?DE). Hence, we
have the following property.

Property 1 Given two :-partitions �1 and �2 of the imprecise probabilistic
graph (�, F ), we have

�1 �? �2 ⇔ �1/�2 > 1.

Notice that the order given by �? is partial since we may have �1 �? �2

and �2 �? �1. Given a constant :, we are then interested in finding the
most probable :-partitions of �. Let %: (+ (�)) be the set of :-partitions of
�. We define M�,: = {� ∈ %: (+ (�)) | �� ′ ∈ %: (+ (�)), � ′ �? �} the set of
non-dominated :-partitions under �?. In the following, we are interested in
enumerating every partition ofM�,: . Hence, we define the following problem.

Most probable :-partitions (:-MPP)

Input A complete graph � and an integer :.

Output Enumeration of M�,: .

3 Analysis

3.1 Computational Complexity

We first show that finding one element ofM�,: is NP-hard, even if : = 2 and
RP has one element. To do so, we construct in the following way a reduction
from the Max Cut (Karp, 1972) problem (that aims at finding a spanning
bipartite subgraph with a maximum number of edges in a graph �).

Construction 1 Given � an instance of Max Cut, we construct an impre-
cise probabilistic graph (�,P) such that:

• + (�) = + (�),
• for each pair of vertices D and E, ?

DE
= ?DE = 0.1 ( red edges) if DE ∈ � (�)

and, ?
DE
= ?DE = 0.5 ( blue edges), otherwise.

The proof idea is that a 2-partition is non-dominated if and only if it contains
a minimum number of red edges, and thus its complement graph is a bipartite
graph with a maximum number of edges. Hence, we can show the following.

Theorem 1 Let (�,P) be an imprecise probabilitstic graph. Computing any
element of M�,: is NP-hard, even if : = 2 and P is a singleton.

Proof Let � be an instance of Max Cut and let � the graph resulting
from Construction 1. First, let � ′ be a two 2-partition of M�,2. Let A =
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|� (�) ∩ � (� ′) | be the number of red edges in � ′. The probability of � ′,
under any realisation, is equal to

%(� ′) = 0.5 |� (�̄ ) | · 0.1A · 0.9 |� (� ) |−A .

Thus, a 2-partition belongs to M�,2 if and only if it contains a minimum
number of red edges. Later, we now show that � ′ contains a 2-partition with
: red edges if and only if there is a bipartite subgraph of � with |� (�) | − A
edges.

• Let � ′ be a 2-partition of � containing : red edges. Notice that �̄ ′ is a
bipartite graph and that by duality its contains a |� (�) | − A red edges.
Hence, since the red edges correspond to the edges of �, the graph � ′

defined by + (� ′) = + (�) and � (� ′) = � (�̄) ∩ � (�) contains |� (�) − A |
edges.

• Let � ′ be a bipartite subgraph of � containing |� (�) | − A edges. Let -
and . be the bipartition of � ′. Let � ′ be the 2-partition of � such that
� ′ = � [-] ∪ � [. ]. The number of red edges in � ′ is equal to A.

Hence, computing a non-dominated 2-partition of � is equivalent to compute
an optimal solution for Max Cut. �

3.2 Easy cases

In this section we present three easy cases in which some element of :-MPP
can be polynomially computed in the size of graph. These easy cases appear
when one value appears in every probabilistic interval of P. The first case is
when 0.5 is contained in every probabilistic interval which implies that any
:-partition is non-dominated.

Theorem 2 Let (�,P) be an imprecise probabilistic graph such that ∀DE ∈
� (�), 0.5 ∈ P(DE). We have M�,: = %: (+).

Proof Let ' be the probability realisation of P such that '(DE) = 0.5 for
any edge DE. Notice that for any :-partition � ′ we have '(� ′) = 0.5 |� (�) |.
Hence, there is a probabilistic realisation for which all :-partitions have the
same probability and therefore, any :-partition is non-dominated. �

The second case is when a value inferior to 0.5 is contained in every prob-
abilistic interval. In that case, every :-partition that contains a minimum
number of edges (i.e., is balanced) is non-dominated.

Theorem 3 Let G < 0.5 and (�,P) be an imprecise probabilistic graph such
that ∀DE ∈ � (�), G ∈ P(DE). Let � ′ be a :-partition of � with connected
components {+1, . . . , +: } of respective orders =1, . . . , =: . If we have

∀8, 9 , |=8 − = 9 | ≤ 1

then, � ′ ∈ M�,: .
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Proof Let ' be the probability realisation of P such that '(DE) = G for
any edge DE. First, note that for any :-partition � ′ of � we have '(� ′) =
G |� (�

′) | · (1−G)� (�)−|� (�′) |. Hence, since G < 0.5, � ′ is more probable under '
if |� (� ′) | is minimum. Toward a contradiction, suppose there is a :-partition
� ′ with a minimum number of edges and such that � ′ has two cliques +8
and + 9 such that |+8 | − |+ 9 | > 1 (we assume without loss of generality that
|+8 | < |+ 9 |). Let E 9 be a vertex of +8. Let � be the :-partition obtained by
replacing +8 and + 9 by +8 ∪ {E 9 } and + 9 \ {E 9 }. We have

|� (� ′) | − |� (�) | = |� (+ 9 ) | − |� (+ 9 \ {E 9 }) | + |� (+8) | − |� (+8 ∪ {E 9 }) |
|� (� ′) | − |� (�) | = |+ 9 | − 1 − |+8 |
|� (� ′) | − |� (�) | > 1.

Thus, � ′ is not a :-partition with a minimum number of edges.
Further, let � ′ be a :-partition of � with connected components {+1, . . . , +: }

of respective orders =1, . . . , =: and such that ∀8, 9 , |=8 −= 9 | ≤ 1. Since � ′ has a
minimum number of edges, � ′ is non-dominated under ' and thus, it belongs
M�,: . �

Finally, the last case is when a value greater to 0.5 is contained in every
probabilistic interval. In that case, every :-partition that contains a maximum
number of edges (i.e., is unbalanced) is non-dominated.

Theorem 4 Let G > 0.5 and (�,P) be an imprecise probabilistic graph such
that ∀DE ∈ � (�), G ∈ P(DE). Let � ′ be a :-partition of � with connected
components {+1, . . . , +: } such that ∀8 < 9 , |+8 | ≤ |+ 9 |. If we have

1. |+8 | = 1,∀8 < :, and
2. |+: | = |+ (�) | − : + 1.

then, � ′ ∈ M�,: .

Proof Let ' be the probability realisation of P such that '(DE) = G for
any edge DE. First, note that for any :-partition � ′ of � we have '(� ′) =
G |� (�

′) | · (1−G)� (�)−|� (�′) |. Hence, since G < 0.5, � ′ is more probable under '
if |� (� ′) | is maximum. A :-partition has a maximum number of edges if and
only if every clique but one is constitued of one vertex, that is, if it respects
(0) and (1). Let � ′ be such :-partition. Since � ′ is non-dominated under ',
it belongs to M�,: . �

4 Heuristic

In this section, we describe some heuristic method used to approachM�,: or
to improve the computation time. This method relies on the use of a pattern
and some associated reductions rules.
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4.1 Pattern and Reduction Rules

Let (�, F ) be an imprecise probabilistic graph. A pattern - of � is a subset of
edges. We say that a :-partition � ′ respects a pattern - if � ′ contains every
edge of - (i.e. - ⊂ � (� ′)). We denote %: (+ (�), -) the set of :-partitions that
respects -. LetM�,: (-) = {� ∈ %: (+ (�), -) | �� ′ ∈ %: (+ (�), -), � ′ �? �}
the set of non-dominated :-partitions respecting -. We give some reduction
rules that reduce the size of � without altering the computation ofM�,: (-).

Let DE be an edge of - and G be any vertex. Note that for any :-partition
� ′ ∈ %: (+ (�), -), D and E are contained in the same clique and � ′ contains
either both GD and GE or none of them. Hence, D and E are acting like a single
vertex and thus, we can contract DE into a single vertex and merge GD and
GE together. Formally, the contraction of DE, denoted 5DE , is the application
which given any graph �, constructs the graph � where:

• + (�) = (+ (�) \ {DE}) ∪ {F},
• � (�) = (� (�) \ {GH | ∀GH ∈ � (�), GH ∩ DE ≠ ∅}) ∪ {GF | ∀G ∈ + (�) \ {DE}}.

The contraction rule uses 5DE and adapts the imprecise probability set and
the pattern so that the sets of non-dominated :-partitions respecting the
pattern are equivalent in the original graph and the newly created graph.

Rule 1 (Contraction rule)

Let (�, F ) be an imprecise probabilistic graph and let - = (�, �) be a
pattern. Let DE be an edge of �. We reduce � to the following imprecise
probabilistic graph (�,G).

• � = 5DE (�),
• for any edge GH of � (�) such that GH ∩ DE = ∅, we set G(GH) = F (GH), and
• for any vertex G ∉ DE of + (�), we set

G(GF) = [
?
GD
· ?

GE

?
GD
· ?

GE
+ (1 − ?

GD
) · (1 − ?

GE
) ,

?̄GD · ?̄GE
?̄GD · ?̄GE + (1 − ?̄GD) · (1 − ?̄GE )

] .

This corresponds to compute bounds over the conditional probability %(GD ∧
GE | (GD ∧ GE) ∨ (¬GD ∧¬GE)). We construct a new pattern - ′ for � as follows.

• Let )- = {GH | GH ∈ -, GH ∩ DE ≠ ∅} and '- = {GF | ∃GH ∈ -, H ∈ DE}. We
set - ′ = (- \ )- ) ∪ '- .

An example of the application of Rule 1 is depicted in Figure 1. The two next
properties show that Rule 1 is safe, that is, the computation of M�,: (-) is
equivalent to the computation of M�,: (. ).

Property 2 5DE is a bijection from %: (+ (�), -) to %: (+ (�), . ).

Proof First, we show that for any � ′ ∈ %: (+ (�), -), we have 5DE (� ′) ∈
%: (+ (�), . ). Let � ′ = 5DE (� ′). Let +DE be the clique containing DE (which
exists since DE ∈ �). Since contracting an edge in a clique leads to another
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F

D

E

G G

Fig. 1 Example of an application of Rule 1 on the edge DE in an imprecise proba-
bilistic graph with a motif - (blue edges).

clique, 5DE (+DE ) is a clique. Moreover, since any other connected component
remains unchanged by 5DE (� ′), � ′ is a :-partition of �. For any edge GF in
'2 (resp. '�), since GD or GE belongs (resp. does not belong) to � (resp. �)
then the vertex G belongs (resp. does not belong) to +DE and thus, the edge
GD belongs (resp. does not belong) to � (� ′). Moreover, since � ′ \ '2 ⊆ �
(resp. �′ \ '� ⊆ �), any edge 4 ∈ � ′ \ '2 (resp. 4 ∈ �′ \ '�) belongs (resp.
does not belong) to � ′ and since 4 is not altered by 5DE , we have 4 ∈ � (� ′)
(resp. 4 ∉ � (� ′)). Hence, � ′ ⊆ � (� ′) and �′ ∩ � (� ′) = ∅, that is, � ′ is a
:-partition that respects . .

Further, we show that 5DE is surjective. Let � ′ be any :-partition of
%: (+ (�), - ′). Let +F be the clique containing F. Since splitting a vertex
in two in a clique leads to another clique, then 5 −1DE (+F ) is also a clique.
Moreover, since any other connected component remains unchanged by 5 −1DE ,
then � ′ = 5 −1DE (� ′) is a :-partition of (�, F ) that contains DE. For any vertex
H ∈ DE and for any edge GH, in )2 \ {DE} (resp. )�), since GF ∈ � ′ (resp.
GF ∈ �′) then the vertex G belongs (resp. does not belong) to 5 −1DE (+F ) and
thus GH ∈ � (� ′) (resp. GH ∉ � (� ′)). Moreover, since � \ )2 ⊆ � ′ (resp.
� \)� ⊆ �′), any edge 4 ∈ � \)2 (resp. 4 ∈ � \)�) belongs to (resp. does not
belong to) � (� ′) and since 4 is not altered by 5 −1, we have 4 ∈ � (� ′) (resp.
4 ∉ � (� ′)). Hence, � ⊆ � (� ′) and � ∩ � (� ′) = ∅, that is, � ′ is a :-partition
that respects -.

Finally, we show that 5DE is injective. Let �1 and �2 be two :-partitions
of %: (+ (�), -). Let GH be an edge such that GH ∈ � (�1) and GH ∉ � (�2).
If GH ∩ DE = ∅, then GH is not altered by 5DE and thus, GH ∈ � ( 5DE (�1)) and
GH ∉ � ( 5DE (�2)). Otherwise, without loss of generality, suppose that G ∉ DE.
Since DE ∈ �, D, E and G belong to the same clique in �1 and there is a clique
in 5 (�1) that contains G and F. Moreover, D, E are not in the same clique as
G in �2, and thus, F is not in the same clique as G in 5 (�2). Hence, we have
5 (�1) ≠ 5 (�2). �

Property 3 Given two :-partitions �1 and �2 in %: (+ (�), -) we have

�1 �? �2 ⇔ 5DE (�1) �6 5DE (�2).

Proof Let - = (�, �) be a pattern of (�, F ) and let �1 and �2 be two k-
partitions in %: (+ (�), -). Let +1

DE and +2
DE be the cliques containing DE in �1
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and �2, respectively (which exist since DE ∈ �). If +1
DE = +

2
DE then, + 1

DE/+ 2
DE = 1.

Since any edge that does not belong to +1
DE or +2

DE are not altered by 5DE , we
have �1/�2 = 5DE (�1)/ 5DE (�2). Thus, �1 �? �2 ⇔ 5DE (�1) �? 5DE (�2).

Now, suppose that +1
DE ≠ +

2
DE . For any edge GF such that GF ∈ 5DE (+1

DE )
and GF ∉ 5DE (+2

DE ), we have {GD, GE} ⊆ � (�1) and {GD, GE} ∩ � (�2) = ∅. We
have

6
GF

1 − 6
GF

=

?
GD
·?
GE

?
GD
·?
GE
+(1−?

GD
) ·(1−?

GE
)

1 −
?
GD
·?
GE

?
GD
·?
GE
+(1−?

GD
) ·(1−?

GE
)

=
?
GD
· ?

GE

(1 − ?
GE
) · (1 − ?

GD
) .

Samewise, for any edge GF such that GF ∉ 5DE (+1
DE ) and GF ∈ 5DE (+2

DE ), we
have {GD, GE} ∩ � (�1) = ∅ and {GD, GE} ⊆ � (�2). We have

1 − 6̄GF
6̄GF

=
1 − ?̄GE · ?̄GD

?̄GD · ?̄GE+(1− ?̄GD) ·(1− ?̄GE )
?̄GD · ?̄GE

?̄GD · ?̄GE+(1− ?̄GD) ·(1− ?̄GE )

=
(1 − ?̄GD) · (1 − ?̄GE )

?̄GD · ?̄GE
.

Hence, since any other edge in +1
DE or +2

DE is not altered by 5DE , we have
5DE (�1)/ 5DE (�2) = �1/�2. Hence, �1 �? �2 ⇔ 5DE (�1) �? 5DE (�2). �

4.2 Algorithm Description

Our method to approach M�,: is described by Algorithm 1. The basic idea
is to reduce the size of the graph by computing a pattern - and applying the
reduction rules described above. Once the size of the reduced graph is small
enough, it seems possible to enumerate every :-partitions and thus compute
M�,: (-) in a relatively small amount of time. The difficulty of this method
is to find a pattern - such that |M�,: (-)ΔM�,: | is minimum. In the next
section, we take the pattern -8 = {DE | ?

DE
≥ 0.9}.

Algorithm 1: Heuristic method

Data: An imprecise probabilistic graph (�, F) and two integers C and :.
Result: A set of :-partitions for �.

1 forall 8 ≤ C do
2 Compute a feasible pattern -8 for (�, F);
3 Apply the contraction rule until -8 is empty;

4 end
5 - ← ⋃

8≤: -8;
6 Enumerate every possible :-partitions of � to compute " ← M�,: (- );
7 return " ;
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5 Numerical Experiments

In the following, we provide some tests for the special case where : = 2.

5.1 Dataset

For our tests, we use two types of dataset, one using some real data and one
using some generated instances.

Real dataset: we use the dataset used by Arinik et al. (2017) that con-
tains vote information for French and Italian members of the european par-
lement. Each member is represented by a vertex in the graph. To generate
the imprecise probability sets, we use the following formula. Let D and E be
two members. Let : be the number of sessions in which both D and E par-
ticipated and let C be the number of sessions in which D and E voted the
same. We set P(DE) = [ C

:+B ,
C+B
:+B ] where B is a parameter settling the speed at

which the intervals converge to a precise value. In the following, we set B = 5.
Since the generated graph contains 870 vertices, it is not possible to compute
exactly the set of non-dominated 2-partitions, we create twenty subinstances
by randomly drawing 15 vertices of the original graph.

Randomly Generated Instances: we proceed as follows. First, we de-
fine : groups of vertices with a given size and an application 5 : {1, . . . , :}2 ↦→
[0, 1]4 which associate to each pair of integers {8, 9} a tuple {<

8, 9
, <̄8, 9 , ℓ8, 9 , ℓ̄8, 9 }.

Then for each pair of vertices D and E such that D belongs to the group 8 and
E belongs to the group 9 (8 can be equal to 9), we draw two real numbers
< ∈ [<

8, 9
, <̄8 , 9] and ℓ ∈ [ℓ

8, 9
, ℓ̄8, 9 ]. Finally, we introduce the edge DE with

the imprecise probabilistic interval F (DE) = [<0G(0, < − ℓ), <8=(1, < + ℓ)].
We test two differents groups configurations.

• Configuration A. The graph contains two groups of 7 vertices, and we set
5 (1, 1) = 5 (2, 2) = {0.9, 0.95, 0, 0.3} and 5 (1, 2) = {0.1, 0.2, 0, 0.3}.

• Configuration B. The graph contains three groups of 6 vertices, and we set
5 (1, 1) = 5 (2, 2) = 5 (3, 3) = {0.9, 0.95, 0, 0.1} and 5 (1, 2) = {0.1, 0.2, 0, 0.1}.
For the values of 5 (1, 3) and 5 (2, 3), we test three differents variations.

– B1: 5 (1, 3) = 5 (2, 3) = {0.45, 0.55, 0, 0.1},
– B2: 5 (1, 3) = 5 (2, 3) = {0.45, 0.55, 0.2, 0.0.35},
– B3: 5 (1, 3) = 5 (2, 3) = {0.45, 0.55, 0.3, 0.7}.

For each configuration and each variation, we generate twenty instances.

5.2 Results

The tests were run on a personal laptop with 16Go of RAM and with an
Intel Core 7 processor 2.5GHz. Results are displayed in Table 1. In our tests,
we compare two exacts algorithms with our heuristic with two different val-
ues of C. The “brute” version enumerate every 2-partitions to construct the
solution set (. For each enumerated 2-partition � ′, if � ′ is not dominated
by another 2-partition of (, then � ′ is added to ( and every 2-partition of
( that is dominated by � ′ is removed from (. The “init” version does the
same thing but ( is initialized by a set of 2-partitions. To initialize (, we take
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the value returned by Algorithm 1 with C = 1. The idea behind the “init”
version is that initializing ( with a set of possibly non-dominated solutions
can reduce computational time (similar ideas can be found in Nakharutai
et al. (2019)).For every configuration, the results correspond to the average
of the twenty instances.

Table 1 Results on real and generated data for the 2-MPP problem. The columns
“Brute” and “Init” correspond to exact algorithms. The columns “t=1” and “t=2”
correspond to Algorihm 1 with two different values of C. “Sol” is the size of the
enumerated 2-partitions, “=” is the size of the graph after the application of the
reduction rules. “ER1” is the percentage of enumerated 2-partitions that do not
belong to M�,: . “ER2” is the percentage of 2-partitions that belong to M�,: and
that are not enumerated. Time is given in seconds.

Config Brute Init t=1 t=2
Time Sol Time Time n Sol ER1 ER2 Time n Sol ER1 ER2

A 15.5 1 0.36 10−3 9.55 1 0% 0% 10−5 4.3 2 0% 0%
B1 1.8 2 3 10−3 6.25 2 0% 0% 10−5 3.05 2 0% 0%
B2 296 2.7 3.05 10−3 6.4 2 0% 17.2% 10−5 3 2 0% 17.2%
B3 5017 71.35 34.9 10−4 6.55 2.7 0% 97% 10−5 3 2 0% 97%

Real 29 827.35 28.5 10−3 6.9 9.15 30% 99.25% 10−5 3.7 2.15 37.5% 99.5%

We can see for the generated instances every 2-partition enumerated by the
heuristic belongs to the exact solution. However, the number of 2-partitions
returned by the heuristic can be relatively small compared to the size ofM�,: .
For example, for the B3 configuration, 97% of M�,: is not enumerated by
the heuristic. Nevertheless, the results of 1 help to drastically reduce the
computation time of the exact algorithm. For instances from real data, the
results are more mixed: almost all ofM�,: is not enumerated by the heuristic
and at least 30% of the 2-partitions returned by the heuristic does not belong
toM�,: . Moreover, since the results of the heuristic are not good enough, the
computation time is not significantly reduced for the “init” version. We can
explain this bad performance by the fact that drawing randomly 15 vertices
in a real instance can lead to a subinstance that is not really representative
since the 15 vertices can belong to the same group.

6 Conclusion

In this paper, we adressed the problem of the most probable :-partition with
imprecise probabilistic edges. After some theoritical results, we developed a
heuristic to tackle this problem. We show that this heuristic can have good
results in practice but becomes less performant if the probability intervals
are to large. A natural perspective of our work can be to find another way to
compute some :-partitions to make the initialisation for the exact version,
since we show that it can significantly reduce the computation time. It can
be interesting to find another method since our heuristic can not perform
well for some instances.
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