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Chapter 1

Space-time-parameter PCA for
data-driven modeling with
application to Bioengineering
Florian De Vuyst, Claire Dupont and Anne-Virginie Salsac

Abstract

Principal component analysis is a recognized powerful and practical method
in statistics and data science. It can also be used in modeling as a dimensionality
reduction tool to achieve low-order models of complex multiphysics or engi-
neering systems. Model-order reduction (MOR) methodologies today are an
important topic for engineering design and analysis. Design space exploration
or accelerated numerical optimization for example are made easier by the use of
reduced-order models. In this chapter, we will talk about the use of higher-order
singular value decompositions (HOSVD) applied to spatiotemporal problems
that are parameterized by a set of design variables or physical parameters.
Here we consider a data-driven reduced order modeling based on a design of
computer experiment: from high-dimensional computational results returned by
high-fidelity solvers (e.g. finite element ones), the HOSVD allows us to determine
spatial, time and parameters principal components. The dynamics of the system
can then be retrieved by identifying the low-order discrete dynamical system.
As application, we will consider the dynamics of deformable capsules flowing
into microchannels. The study of such fluid-structure interaction problems
is motivated by the use of microcapsules as innovative drug delivery carriers
through blood vessels.

Keywords: HOSVD, spatio-temporal parametrized problem, approximation,
reduced-order model, bioengineering, fluid-structure interaction, deformable
capsules, dynamical system, machine learning, artificial intelligence

1. Introduction

Manufactured deformable microcapsules are intended to be used as drug
carriers within the human vascular network to deliver drugs at specific targets
(tumors, etc.). In order to design reliable capsules, one can make help of numer-
ical simulation and high performance computing. The transportation of such
capsules into microchannels is a three-dimensional fluid-structure interaction
(FSI) problem involving a fluid flow within a confined environment and the
deformation of hyperelastic membranes [1, 2]. The behavior of the membrane
depends on dimensionless parameters such as the capillary number denoted
by Ca and the aspect ratio a/ℓ between the capsule radius a and the channel
characteristic length ℓ. The parameter vector 𝝁 = (Ca, a/ℓ), for which a capsule
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Space-time-parameter PCA and data-driven modeling

steady shape exists, lies in a bounded domain D ⊂ R2. We look for the time
evolution of the capsule shape under a Lagrangian description. From an initial
shape X, we are interested in determining the capsule position x(X, t, 𝝁) in the
microchannel domain Ω ∈ R3 at time t for a parameter vector 𝝁 ∈ D. By
denoting u the displacement vector from the initial position, we have

x(X, 𝝁, t) = X + u(X, 𝝁, t) (1)

with u(X, 𝝁, 0) = 0. The governing equations of the FSI problem include both
kinematics and motion equations. At the membrane, we have equilibrium of the
mechanical forces (mechanical equilibrium of the membrane and viscous stresses
from the fluid). By denoting v the vector field of velocity at the membrane, the
system of differential algebraic equations in abstract form reads

¤u = v, (2)

v = F𝜇 (u,X). (3)

Practically, there are different candidate computational approaches to discretize
this system of equations. First, the initial capsule membrane has to be discretized
by using a finite element triangular mesh made of nodes {Xi}I

i=1. Regarding
time discretization, in [2], an explicit time scheme is used and the velocity field
is determined by the use of a boundary integral method (BIM) coupled with
a finite element method (FEM). A numerical stability condition imposes the
use of small time steps. For a given parameter 𝝁, the time evolution of capsule
dynamics on the time intervals of interest generally requires hours of CPU
time. To better understand the membrane behavior with respect to 𝝁, a design
of computer experiment (DoCE) is done: from a set of J parameter samples of
𝝁j ∈ D, j = 1, ..., J, a spatio-temporal solution is computed for each 𝝁j, leading
to a database of shape solutions under the form of a third-order tensor

Tx =
(
x(Xi, 𝝁j, tn)

)
i=1,...,I, j=1,...,J, n=0,...,N,

∈ R3I×J×(N+1) (4)

using a triangular finite element discretization of the membrane, a time dis-
cretization tn = nΔt (assuming that the time step is constant) and the parameter
samples 𝝁j. Typically, for practical computations, I = O(1000), N = O(10000)
and J = O(100), so that the tensor database becomes rather huge (about O(10)
gigabytes). Of course, one can only store the solutions at coarser times steps and
reduce N to O(100) but the database remains rather big in this case.

From this data tensor, one can imagine different use cases leading to different
tools:

1. Data exploration and knowledge extraction;

2. Real-time rendering of capsule dynamics for better understanding;

3. Data-driven modeling of capsule dynamics in the whole parameter domain.

First and second items can be achieved by means of data dimensionality
reduction. This allows for a lower storage of data in memory as well as a lower
numerical complexity of processing and manipulation. In this chapter we
will consider a higher order Singular Value Decomposition (HOSVD) which
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is a generalization of PCA to tensors. The third item involves a model-order
reduction (MOR) methodology. From computed data, we would like to derive
a lightweight dynamical system that reproduces the data and, even more, that
is able to accurately estimate solutions for any parameter value 𝝁. Data-driven
model-order reduction first makes use of data-dimensionality reduction by a low-
order tensor decomposition of the solutions according to some suitable spatial,
temporal and parameter reduced bases (see [3]). In our application, this will give
the truncated decomposition (where the solutions are here seen as functions):

x̃(X, 𝝁, t) = X +
K∑︁

k=1

L∑︁
ℓ=1

M∑︁
m=1

akℓm 𝝋k (X) 𝜓ℓ (𝝁) 𝜔m(t) (5)

for some expansion coefficients akℓm and some spatial functions 𝝋k, parameter
functions 𝜓ℓ and temporal functions 𝜔m with 𝜔m(0) = 0 ensuring x(X, 𝝁, 0) = X.
The truncation ranks K, L and M are expected to be small enough (K ≪ I,
L ≪ J and M ≪ N). Discretized shape solutions returned by the full-order
computational model (FOM) are stored into a third-order tensor of data Tx. Let T̃x
denote the truncated tensor expansion related to (5). It reads:

T̃x = A0 ⊗ eN +
K∑︁

k=1

L∑︁
ℓ=1

M∑︁
m=1

akℓm 𝚽k ⊗ 𝚿ℓ ⊗ wm ≈ Tx (6)

where A0 ∈ RI×J, (A0)ij = Xi, eN = (1, ..., 1)T ∈ RN, 𝚽k ∈ RI, 𝚿ℓ ∈ RJ and wm ∈ RN.
In this chapter, we will seamlessly use the functional representation or the tensor
one.

From this reduced form, we will then apply a kernel-based Dynamic Mode
Decomposition (k-DMD, see [4]) to derive a dynamical system able to predict the
capsule shape evolution over time for any parameter 𝝁. This will be developed in
the next sections.

2. Higher-order singular value decomposition and truncation

2.1 Compact HOSVD

The higher-order singular value decomposition (HOSVD) of a tensor is
a specific orthogonal Tucker decomposition. The classical computation of a
HOSVD was introduced by L. R. Tucker [5] and further developed by L. De
Lathauwer et al. [6]. Robust computations or improvements have been since pro-
posed [6–8]. For a tensor T of order d, the idea is to compute the singular value
decomposition of each factor-k flattening T(k) of a tensor T , i.e. a ”matricisation”
of the tensor where the rows of the matrix are related to the k-th dimension.

In our case, we consider a third-order tensor and successive spatial, parameter
and temporal flattening to find the singular vectors. The spatial tensor flattening
T(X) ∈ RI×(J.N) of the tensor

(
Tx − A0 ⊗ eN ) is(

T(X)
)

ip = x(Xi, 𝝁j, tn) − Xi, p = j + (n − 1)J

(meaning that the 𝝁 and t dimensions are stacked in columns in the matrix).
The SVD of T(X) provides rx nonzero singular values with rx corresponding
singular orthonormal vectors 𝚽k, k = 1, ..., rx. Similarly the parameter flattening
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Space-time-parameter PCA and data-driven modeling

leads to a rank r𝜇 with r𝜇 modes 𝚿ℓ , ℓ = 1, ..., r𝜇 and the time flattening a rank rt
with rt modes wm, m = 1, ..., rt. The tuple (rX, r𝜇, rt) is the multilinear rank of Tx.
Then tensor Tx can be written as

Tx = A0 ⊗ eN +
rX∑︁

k=1

r𝜇∑︁
ℓ=1

rt∑︁
m=1

akℓm 𝚽k ⊗ 𝚿ℓ ⊗ wm. (7)

2.2 Approximation

Among the applications, HOSVD can be used to define a low-order approxi-
mation of tensors. The so-called truncated HOSVD [9–11] consists in truncating
the expansion (7) at a given multilinear rank (K, L,M), K ≤ rX, L ≤ r𝜇, M ≤ rt,
leading to (6). Let mlrank(T ) denote the multilinear rank of the tensor T . It has
been shown that the approximation (6) returns a quasi-optimal solution of the
nonlinear non-convex least-square problem

min
T̃

1
2
∥Tx − T̃ ∥2

F (8)

(here ∥.∥F is the Frobenius norm for tensors) subject to mlrank(T̃ ) = (K, L,M).
The truncation ranks can be determined a priori according to the classical relative
information content (RIC) of the SVD theory.

Eq. (6) can already be used as a compressed representation of the data,
allowing for a lower storage complexity and a simpler manipulation, with low
information loss if the RIC is high.

3. Reduced-order modeling of capsule dynamics

Eq. (6) provides a summarization of the family of spatio-temporal capsule
shape solutions in the time interval [t0, tN]. Unfortunately, this algebraic model
has no predictability capability for time t > tN. To derive a predictable time-
dependent model from the data tensor Tx, one has to derive a differential system
that approximates the FSI system of equations (2) and (3). The HOSVD reduction
can thus be valued in the context of model-order reduction.

Consider of parameter vector of interest 𝝁 ∈ D. The capsule position
approximate solution (5) can be rewritten as

x̃(X, 𝝁, t) = X +
K∑︁

k=1

a𝜇,k (t) 𝝋k (X) (9)

with

a𝜇,k (t) =
L∑︁

ℓ=1

M∑︁
m=1

akℓm𝜓ℓ (𝝁)𝜔m(t). (10)

Let a𝜇 (t) be the vector-valued function

a𝜇 (t) =
(
a𝜇,1(t), ..., a𝜇,K (t)

)T ∈ RK .

4
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We would like to derive a differential system of unknowns a𝜇 (t). Since
x(X, 𝝁, 0) = X, we have the natural initial condition a𝜇 (0) = 0. Practically, from
expansion (7), we can compute coefficients a𝜇,k (t) at discrete times tn, and have
thus access to the list of coefficient vectors

an
𝜇 = a𝜇 (tn), n = 0, ...,N. (11)

A dynamical reduced-order model consists in determining (or approximating) a
Lipschitz continuous mapping F𝜇 : RK → RK such that

a0
𝜇 = 0, an+1

𝜇 ≈ F𝜇 (an
𝜇) ∀n ∈ 0, ...,N − 1 (12)

from the data {an
𝜇}N

n=0. We get a low-order discrete dynamical system. Note
that, here, we do not search for parameters of a model, but for the equations of
the model themselves. Since the problem of finding such a mapping is infinite
dimensional, one has to restrict the search to a mapping in a (suitable) finite
dimensional functional space.

4. Koopman theory and dynamic mode decomposition

4.1 Koopman operator for discrete dynamical systems

Koopman theory is a powerful mathematical framework that re-expresses
a general nonlinear discrete dynamical system as the knowledge of a linear
(infinite dimensional) operator, the so-called Koopman operator or compositional
operator. Today it is commonly used in machine learning and data-driven model-
order reduction methodologies [4, 12]. Let us assume a discrete dynamical
system in the form

an+1 = F(an), n ∈ N (13)

for a Lipschitz continuous mapping F from Rd to Rd. Let g be a function of a
Banach space X, g : Rd → R. So we have g(an+1) = (g ◦ F) (an). The Koopman
operator related to F is defined as

Kg = g ◦ F ∀g ∈ X. (14)

Then we have

g(an+1) = (Kg) (an).

The knowledge of K includes the knowledge of F. Indeed, by taking the particu-
lar observables gi(a) = a · ei, i = 1, ..., d where ei is the i-th vector of the canonical
basis of Rd, we retrieve (an+1)i = Fi(an), i.e. the i-th equation of (13). Of course, the
linear Koopman operator acts on an infinite-dimensional functional space, so it is
impossible to determine it exactly. However, one can search for an approximate
Koopman operator K̃ that acts on an approximate finite-dimensional space
X̃ ⊂ X.

The concept of (nonlinear) observables is to have a sufficiently large set of
independent nonlinear functions of the state vector and measurements of them
in order to identify the mapping F. A natural question of interest is what are
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Space-time-parameter PCA and data-driven modeling

the best observables to choose. There is no absolute answer to this question,
and the choice may depend on the underlying Physics. Without any a priori
knowledge on the system of equations, one can use basis functions of a universal
approximators like polynomials, Fourier or kernel-based functions for example.

4.2 Dynamic mode decomposition

The simplest choice of observables is the linear functions gi(a) = a · ei, i =

1, ..., d. It leads to the search of a finite-dimensional approximation A of T from
the full state vector data. The matrix A can be searched as the solution of the least
square minimization problem

min
A∈ℳd (R)

1
2
∥Y − AX∥2

F (15)

where X = [a0, a1, ..., aN−1] and Y = [a1, a2, ..., aN]. Assuming N ≥ d, the solution
is given by A = YXT (XXT)−1. The least square problem (15) can be eventually
regularized for better conditioning by a Tykhonov regularization term [13, 14].
This practical approach of Koopman operator approximation is referred to as the
dynamic mode decomposition (DMD) [4, 12]. This provides a linear dynamical
model

an+1 = Aan (16)

starting from a given initial condition a0. The solution of (16) which is an = Ana0

is bounded for any initial condition a0 as soon as 𝜌(A) ≤ 1.

5. Kernel-based identification of dynamical systems

In the case of a strongly linear dynamical system, the linear model (16) can
be not accurate enough. We have to include suitable nonlinear observables in
the data and the model. In this section, observables are selected from kernel-
based approximations [15]. Then we use the variant kernel-DMD (k-DMD, [4])
approach to identify F.

A real-valued function k on Rd × Rd is called a positive definite kernel function
if it is symmetric and if the following property holds:

∀m ∈ N★, ∀{zi}m
i=1 ∈ (Rd)m,∀{𝛼i}m

i=1 ∈ Rm,

m∑︁
i=1

m∑︁
j=1

𝛼i 𝛼j k(zi, zj) ≥ 0.

In other words, the square matrix K =
(
k(zi, zj)

)
i=1,...,m, j=1,...,m is positive semi-

definite. A standard kernel function is for example the Gaussian one

k(z, z′) = exp
(
−1

2
∥z − z′∥2

𝜎2

)
(17)

for a given parameter 𝜎 > 0.

6
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5.1 Kernel-based interpolation

Kernel functions can be used for interpolation in spaces of arbitrary dimen-
sion. Let g : Rd → R be a continuous function and assume that we know
the values of g(zi) at particular points zi, i = 1, ...,m. then one can define an
interpolator ℐg of g defined as

ℐg(z) =
m∑︁

j=1

𝛼j k(z, zj) (18)

where the coefficient vector 𝜶 = (𝛼1, ..., 𝛼m)T is determined such that the
interpolation property

ℐg(zi) = g(zi) ∀i ∈ {1, ...,m}.

holds. The interpolation conditions clearly lead to the solution of the symmetric
linear square system of size m

K𝜶 = b (19)

where b = (g(z1), ..., g(zm))T). Assuming that K is positive definite, then Eq. (19)
has a unique solution. Let

ki(z) = k(z, zi), i = 1, ...,m

and V = span(k1, ..., km). Considering any function g̃ ∈ V, it is easy to check
that g̃ = ℐg̃. One can derive the interpolation error

∥g −ℐg∥L∞ = ∥g − g̃ + g̃ −ℐg∥L∞

= ∥g − g̃ +ℐg̃ −ℐg∥L∞

≤ ∥g − g̃∥L∞ + |||ℐ ||| ∥g − g̃∥L∞

so that

∥g −ℐg∥L∞ ≤ (1 + |||ℐ |||) inf
g̃∈V

∥g − g̃∥L∞ . (20)

The interpolation error is controlled by the best approximation error multiplied
by a stability constant depending on the norm of the interpolation operator.

5.2 Use of kernel features and k-DMD

Let us go back to the parameterized dynamical system of interest (12) and
consider a point cloud {a(j) }m

j=1 of sample states in the admissible reduced state

space X ⊂ RK. The functions

kj(a) = k(a, a(j) )

can be seen as features and thus be used as suitable nonlinear observables to
approximate the Koopman operator. From any known full state vector an

𝜇 at

7
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time tn, we build the vector of observables

𝜿(an
𝜇) =

(
k1(an

𝜇), k2(an
𝜇), ..., km(an

𝜇)
)T

. (21)

By definition of the Koopman operator, we have ki(an+1
𝜇 ) = (ki◦F) (an

𝜇) = (Kki) (an
𝜇).

Then we look for a finite-dimensional approximation A𝜇 of the Koopman
operator K in the sense

𝜿(an+1
𝜇 ) ≈ A𝜇 𝜿(an

𝜇) ∀n ∈ {0, ...,N − 1} (22)

The matrix A𝜇 is searched as the minimum of the least square problem

min
A∈ℳm (R)

1
2
∥Y𝜇 − A X𝜇 ∥2

F

where the entry and output data matrices are now X𝜇 = [𝜿(a0
𝜇), 𝜿(a1

𝜇), ..., 𝜿(aN−1
𝜇 )]

and Y𝜇 = [𝜿(a1
𝜇), 𝜿(a2

𝜇), ..., 𝜿(aN
𝜇 )]. We get the dynamical system 𝜿(an+1

𝜇 ) =

A𝜇 𝜿(an
𝜇) with a specified initial condition 𝜿(a0

𝜇).
Let us emphasize that the computational variables are now the 𝜿(an

𝜇). But we
still need the full state variables an to determine the displacements or the capsule
shapes. The full state can be retrieved for example by interpolation: taking gi(a) =
a · ei, we get

(a𝜇)n+1
i ≈ ℐgi(an+1

𝜇 ) =
m∑︁

j=1

(𝜶j)i ki(an+1
𝜇 )

with interpolation coefficients vectors {𝜶j}m
j=1 such that

a(i) =
m∑︁

j=1

𝜶j kj(a(i) ) ∀i ∈ {1, ...,m}

(linear system of dimension m × K). The coefficient vectors 𝜶j can be computed
once for all.

5.3 Including the full state vector and the constants into the features

The k-DMD approach can be improved by including the full-state vector a𝜇

itself into the input feature vector. Moreover, if the kernel functions are not able
to perfectly reproduce the constant ones, for accuracy reasons it is justified to
add the constants into the features. Considering the augmented vector 𝜼(a𝜇) of
observables

𝜼(a𝜇) =


a𝜇

𝜿(a𝜇)
1

 ∈ RK+m+1, (23)

we look for a dynamical system in the form

an+1
𝜇 = A𝜇 𝜼(an

𝜇) ≈ F𝜇 (an
𝜇) (24)

8
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with a constant rectangular matrix A𝜇 of size K × (K + m + 1) to identify. The first
advantage is that the output vector is the full state itself. The second one is the
number of elements of A𝜇 which is less than m2 as soon as K(K + m + 1) ≤ m2.
In this case, there are less coefficients to identify. The input and output matrices
now are

X𝜇 = [𝜼(a0
𝜇), 𝜼(a1

𝜇), ..., 𝜼(aN−1
𝜇 )], Y𝜇 = [a1

𝜇, a2
𝜇, ..., aN

𝜇 ] . (25)

Assuming N ≥ (K + m), the rectangular matrix A𝜇 solution of the least square
problem

min
A∈ℳK,K+m+1 (R)

1
2
∥Y𝜇 − A X𝜇 ∥2

F (26)

is computed as A𝜇 = Y𝜇XT
𝜇 (X𝜇XT

𝜇)−1.

5.4 Summary and whole algorithm

We give a summary of the model-order reduction algorithm:

1. Input data: third-order tensor Tx (4) made of capsule shape solutions of size
3I × J × (N + 1).

2. HOSVD + truncated approximation: compute (7) and get the truncated
approximation with the truncated multilinear ranks (K, L,M):

T̃x = A0 ⊗ eN +
K∑︁

k=1

L∑︁
ℓ=1

M∑︁
m=1

akℓm 𝚽k ⊗ 𝚿ℓ ⊗ wm

3. Online stage: choose a parameter vector 𝝁. From (11), compute the data
coefficients a𝜇 (tn) = an

𝜇 (see Eq. (11)) from (10). Choose a kernel function
k(., .), choose m and the centers a(j) , j = 1, ...,m. Assemble the observables
𝜼(an

𝜇) and assemble the matrices X𝜇 and Y𝜇 (Eq. (25)). Compute the k-DMD
matrix A𝜇 = Y𝜇XT

𝜇 (X𝜇XT
𝜇)−1. We get the reduced-order dynamical

system (24) with a0
𝜇 = 0 as initial value.

6. Numerical results for capsule dynamics

The algorithm is applied to a problem of deformable capsules flowing into
a square-based microchannel (typical for microfluidic channels created by soft
lithography) with a bulk inflow velocity V [1, 2]. Related works and variant
ROM approaches on this topic can be found in [14, 18]. The capsule dynamics
is simulated by the full-order fluid-structure interaction solver. The fluid solver
is based on the solution of the Stokes equations and a nonlinear Neo-Hookean
law is used for the membrane. The initial capsule is spherical, corresponding to
the shape at rest. The sphere is discretized with a finite element mesh made of
I = 2562 vertices.

9
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6.1 Study for a particular parameter couple (Ca, a/ℓ)

The objective of this subsection being to illustrate the methods on an example
and show how to apply them, we only consider the snapshot FOM solutions for
(Ca, a/ℓ) = (0.1, 0.9) for the sake of simplicity and brevity. Figure 1 shows both
membrane shapes and positions in the channel at different instants. At each time

Figure 1.
Example of a microcapsule dynamics within a square-base channel for (Ca, a/ℓ) = (0.1, 0.90). Shapes and
locations of an initially spherical capsule are shown at t = 0 (in transparency), 0.4, 2.8, 5.2, 7.6.

tn = nΔt, where the time step is equal to Δt = 0.04, a snapshot is saved and
stored in the database. Note that all time quantities are adimensionalized by the
factor ℓ/V. The resulting generated data matrix is used as the entry matrix for
the ROM learning process. Then a truncated SVD is applied to get the spatial
POD modes. In Figure 2, the four first eigenmodes Φk are plotted (more precisely
this is a combination of each mode with the original spherical shape for better
visualization and understanding of their influence). In Figure 3, the graphics
k ↦→ 1 − RIC(k) in log scale is plotted. We decide to use a truncation rank K equal
to K = 10, returning a relative information content of about 1 − 3.5 × 10−5.

Then a reduced-order dynamical system for the capsule time evolution is
searched. In this example, we compare two models: the first one is the affine
approximation (denoted by ROM-A)

an+1
𝜇 = A𝜇an

𝜇 + b𝜇

with the matrix A and the vector b to identify. It is equivalent to consider the
vector of features 𝜼(a) = (a, 1)T. The second nonlinear model is built from the
observable vector 𝜼(a) = (a, 𝜿(a), 1)T with the recurrent time scheme

an+1
𝜇 = A𝜇𝜼(an

𝜇)

(ROM-B). For ROM-B, the Gaussian kernel function (17) is used. The standard
deviation parameter 𝜎 in (17) is chosen as 𝜎 = maxn ∥an

𝜇 ∥ = ∥aN+1
𝜇 ∥2. In both

cases ROM-A and ROM-B, the determination of the matrix A𝜇 by minimization
of the least square problem (26) leads to a very small residual. In Figure 4, the
logarithm of the relative time residual

n ↦→ log10

(
∥an+1

𝜇 − A𝜇𝜼(an
𝜇)∥2/∥an+1

𝜇 ∥2
)

is plotted for each ROM model. One can observe values between 10−14 and 10−8.
The residual for ROM-B appears to be slightly smaller than that of ROM-A

10
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Numerical results for capsule dynamics

Figure 2.
SVD: four first spatial principal components computed by the HOSVD. Each mode has been added on the initial
spherical shape and amplified by a factor 2 for better visualization. Higher-order modes show oscillations at the
rear of the capsule.

Figure 3.
SVD: plot of k ↦→ 1 − RIC(k) , where RIC(k) represents the relative information content at truncation rank k.

thanks to the added nonlinear terms. A surprising result is that the affine ROM-
A model returns rather accurate results whereas the fluid-structure interaction
problem is intrinsically nonlinear.

In order to study the stability of the model ROM-A, in Figure (5) we plot the
complex eigenvalues of the square matrix A𝜇. We observe that all the eigenvalues
have a modulus less or equal to one. One of the eigenvalues is 1 exactly (up to

11
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DP roundoff errors), meaning that there is a physical invariant in the system. It
is known that the capsule volume is kept constant during time, because of the
incompressibility of the fluid. For ROM-A, since an+1

𝜇 = A𝜇an
𝜇 + b and a0

𝜇 = 0, we
have

an
𝜇 = An

𝜇a0
𝜇 +

n−1∑︁
k=0

Ak
𝜇b =

n−1∑︁
k=0

Ak
𝜇b.

The matrix A𝜇 is observed to be diagonalizable in C. There is an invertible matrix
P𝜇 such that A𝜇 = P𝜇Λ𝜇P−1

𝜇 where Λ𝜇 is the diagonal matrix of the eigenvalues.
Since it is observed that 𝜌(Λ𝜇) = 1, we have

∥an
𝜇 ∥ ≤ Cond(P𝜇) n ∥b∥, ∀n ∈ N,

showing that the coefficients in the PCA space grow at most linearly in time.

Figure 4.

Matrix identification. Log of the normalized residual n ↦→ log10

(
∥an+1

𝜇 − A𝜇𝜼 (an
𝜇 ) ∥2/∥an+1

𝜇 ∥2
)

for both
ROM-A and ROM-B.

Figure 5.
Matrix identification. Eigenvalues of the computed matrix A𝜇 plotted in the complex plane for the ROM-A
model. One of the eigenvalue is 1 up to round-off error.

12
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In Figure 6, we compare the computed capsule shapes and positions in the
channel for the computed FOM capsules obtained at different times: t = 0, 0.4,
2.8, 5.2 and 7.6. What can be observed is that the ROM-B model returns very
satisfactory results where the shape solutions fully overlap the FOM ones ’at the
eye norm’. More finely, in Figure 7, the time evolution of the errors in the capsule
3D shape of the ROM solutions as compared to the FOM solutions is plotted. The
difference between the shapes are quantified by 𝜀Shape(t), the ratio between the
modified Hausdorff distance (MHD) computed between the FOM shape SFOM(t)
and the ROM shape SROM(t) and the channel characteristic length ℓ:

𝜀Shape(t) =
MHD(SFOM(t),SROM(t))

ℓ
.

The modified Hausdorff distance measures the maximum value of the mean
distance between the two shapes to compare [16]. The ROM-A and ROM-B
models return very accurate solutions with maximum 0.1% error. It is also
observed that the ROM-B models is slightly more accurate than the affine
approximation.

Figure 6.
Sequence of cross-section capsule shapes and positions in the microchannel from the initial spherical shape
shown in light green at the beginning of the channel: comparison of the FOM solutions (grey dots) and of the
solutions computed from the dynamical k-DMD reduced-order model (dark green solid line) at the same instants
as in Figure 1: t = 0, 0.4, 2.8, 5.2, 7.6.

6.2 HOSVD on the whole data tensor, error measurements on the whole
database

Now the consider the whole database made of 55 samples in the param-
eter domain. In Figure 8 we plot the location of the 55 chosen samples in the
plane (Ca, a/ℓ). The design zone of interest corresponds to capsule shapes that
can reach a steady state after a certain time.

A SVD is first performed on the 𝜇-flattening of the data tensor Tx. In Figure 9,
we plot the four first parameter (normalized) eigenmodes in the parameter
domain. These modes give an idea on the dependency of the capsule shapes with
respect to the parameters. To complete the analysis, on Figure 10 we show the
spectrum of the singular values for the 𝜇-flattening matrix. One can observe a
rather fast decay of the singular values especially for the ten first modes.

Next, we perform the SVD of the time t-flattening matrix of Tx. The SVD
provides us temporal eigenmodes. In Figure 11, the four first temporal eigen-
modes 𝜔m, m = 1, ..., 4 are plotted. The first one appears to be the linear
function while the others add details especially in the transient zone of the
capsule dynamics. The spectrum of the singular values again shows a fast decay
especially for the six first modes.

To conclude this section, we have tested the accuracy of both ROM-A and
ROM-B on the whole database. For each sample, we have derived a ROM model,

13
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(a)

(b)

Figure 7.
(a) Comparison of the time evolution of the shape error between the affine DMD model (ROM-A with K = 10)
and the kernel-based one (ROM-B with K = 10, M = 5). One can observe a maximum error less than 0.1% in
both cases. (b) Sensitivity analysis of the parameter 𝜎 (∥ aN+1 ∥2= 667.14.)

i.e. a low-order dynamical system formulated in the PCA space. Then we have
compared the ROM solution to the FOM solution by calculating 𝜀Shape between
the two capsule shapes. In Figure 12, the heat maps of 𝜀Shape are plotted for ROM-
A and ROM-B. One can observe a uniform accuracy over the whole parameter
domain, with errors less than 0.1%, thus showing the efficiency of the approach.
Reported computational speedups are between 5,000 and 10,000 using ROM
models. A computer with two Intel Xeon GOLD 6130 CPU (2.1 Ghz) has been
used for the numerical tests.

7. Discussion

Having shown how to apply the affine DMD and k-DMD models and the
very high precision in prediction that they offer, we now would like to provide

14
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Figure 8.
Samples of the design of experiment in the parameter space (Ca, a/ℓ ) . The zone of interest corresponds to
capsule shapes that reach a steady state after a certain time.

Figure 9.
HOSVD: the first four parameter eigenmodes in the parameter domain, computed from the 𝜇-flattening of the
data cube.

some further comments and remarks on model order reduction and DMD-type
approaches.

7.1 Kolmogorov n-width

The method is efficient if the spectrum of singular values decays rapidly,
leading to a small truncation rank K. If the spectrum decays slowly, there are two
possible reasons for that: either the entropy (variety) of information in the data

15
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Figure 10.
Spectrum of the singular values of the 𝜇-flattening matrix.

Figure 11.
HOSVD. Left: first four temporal eigenmodes computed from the SVD decomposition of the t-flattening data
tensor. Right: spectrum of the singular values.

Figure 12.
Heat maps of the Modified Hausdorff distance between the FOM solutions and the ROM ones at dimensionless
time Vt/ℓ = 10. Left: ROM-A, right:ROM-B. Errors are less than 0.1%.

is high, or the solutions do not live in a linear space but rather on a nonlinear
manifold. To fix the problem, one can proceed by performing a preliminary
clustering of the data, scanning the parameter dimension. One can either use
standard clustering techniques such as K-means, or a multidimensional scaling
(MDS) approach. Then for each cluster, one can consider again a HOSVD and
reduced-order approach suitable for each element of the cluster.

16
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7.2 Selection of the kernel functions and kernel interpolation points

As already mentioned, the choice of the kernel function depends on the
applications, on the behavior of solutions and/or on the underlying Physics.
Without any a priori information, one can use universal approximation kernels
like the Gaussian one. The accuracy of the results will also strongly depends
on the choice of the kernel interpolation points a(j) . The sampling {a(j) }m

j=1 has
to correctly fill in the admissible space, or at least the state-space trajectory of
interest. There are different possible strategies. A first candidate is the use of a
clustering approach applied to the state-space data. The points a(j) then are the
centroids of each cluster. But one can consider more sophisticated approaches
like a greedy iterative approach that controls the interpolation error on the
data. At each iterate an interpolation point a(j) is added at the location of worst
interpolation error, considering all the sample solutions.

7.3 Interpretation in terms of a recurrent neural network

Let us remark that the approach can be reinterpreted as a (supervized) two-
layer recurrent artificial neural network (RNN) [17]. The first layer consists
in generating the features ki(a𝜇). The second layer is a linear matrix-vector
multiplication using the matrix A𝜇.

Figure 13.
Interpretation of the method as a recurrent neural network (RNN) in the PCA space.

8. Conclusions

In this chapter, the higher-order singular value decomposition has been
proved to be a flexible and valuable tool in the data-driven reduced-order
modeling of solutions of space-time-parameter problems, which are today at
the heart of many industrial applications. The methodology has been tested on
a problem of fluid-structure interaction of deformable microcapsules flowing
into a microchannel. Stokes equations have been used in the fluid whereas a
nonlinear hypereleastic law has been used for the membrane. Different shape
solutions computed by the full-order model have been stored into a third-order
tensor. First, HOSVD allows us to compute spatial, temporal and parameter
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principal components and at the same time to compress the data. We get a low-
order representation of the solutions with a shared spatial reduced basis. Spatial
principal components are observed to provide suitable details in the shape
solutions. The modes are arranged in decreasing order of importance according
to the relative information content criterion. Next, additional ingredients such as
kernel approximation and kernel-based dynamic mode decomposition are used
to determine a reduced-order dynamical system for any parameter vector in the
admissible parameter domain. The resulting low-dynamical system can be seen
as an encoded recurrent neural network set into the PCA space. The approach
allows us to explore the different shape solutions and visualize their evolution in
the channel in real time.
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Nomenclature

SVD Singular value decomposition
HOSVD Higher-order singular value decomposition
PCA Principal component analysis
MOR Model order reduction
FOM Full order model
ROM Reduced order model
FSI Fluid-structure interaction
DoCE Design of computer experiment
POD Proper orthogonal decomposition
RIC Relative information content
DMD Dynamic mode decomposition
k-DMD Kernel-based dynamic mode decomposition
MHD Modified Hausdorff distance
RNN Recurrent neural network
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