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1 Introduction

In the recent years, we have seen a surge in the number and strength of wildfires around
the globe. These events, whether natural or caused by human activities, can damage the
wildlife, as well as people and infrastructures. When a wildfire breaks, Incident Management
Teams (IMTs) need to dispatch their resources to contain the fire, evacuate the people, and
protect community assets (hospitals, bridges, schools, etc.).

In this paper, we will focus more particularly on vehicle routing for asset protection.
IMTs need to assign an heterogeneous fleet of vehicles to the different community assets
to carry out preventive actions. Such actions include wetting the facade of a building or
removing fuel material, for example. These actions effectively mitigate the damages if they
are accomplished within a specified time window, not too soon or too late. Their complexity
often requires the cooperation and synchronization of multiple teams and vehicles.

Unfortunately, the behaviour of wildfires and its consequences are hard to predict.
Changes in wind conditions, road closures due to fallen trees, vehicles breakdowns, can
make the vehicles’ routes obsolete. IMTs need to react to any disruption by updating the
routes of the vehicles. The new routes must protect as many assets as possible, but there
is an incentive to limit the deviation from the initial routes, as some actions may require
specific preparation and to limit communication issues.

The problem of routing vehicles for asset protection during a wildfire was presented
as the Asset Protection Problem during escaped wildfire (APP) in Van der Merwe et. al.
(2015). Van der Merwe et. al. (2017) defines the dynamic APP that aims at rerouting
vehicles after a disruption occurs. As the dynamic APP is a bi-objective problem, the
solution is a trade-off surface called Pareto front. The Pareto front is described by a set of
solutions such that there is no feasible solution that strictly improves one objective without
degrading the second. We say that these solutions are non-dominated. Multiple heuristic
approaches have been studied for the mono-objective version of the APP ((Roozbeh et
al. 2018), (Nuraiman et. al. 2020), (Yahiaoui et al. 2021)).

Our work focuses on improving the resolution of the optimal Pareto front for the dy-
namic APP by finding good valid inequalities that rely on the bi-objective or dynamic
nature of our problem.

2 Problem presentation

The first mathematical formulation of the APP was proposed by Van der Merwe et
al. (2015). The authors modeled the APP as a Synchronized Team Orienteering Problem
with Time Windows (STOPTW). An instance is defined as a graph G = (V,A). The
vertices V represent the depots and the assets we seek to protect. Each asset has a resource
requirement defined as a vector of integers. Resources are non-consumable. Each asset also
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has a time window in which the protection action must start. To carry out the protection
actions, a set of heterogeneous vehicles is available, each having a capability vector. The
aim is to assign the assets to the routes of vehicles, such that the total protected value
is maximized. An asset is protected if the cumulative capability vectors of the vehicles
assigned to the asset covers the resource requirements of the asset, and if the protection
action starts within the time window of the asset. The protection action at an asset can
start only when every vehicle assigned to the asset has arrived (synchronization).

Van der Merwe et al. (2017) extended the mathematical formulation of the APP to
the dynamic APP. On top of the assets and vehicles, the dynamic APP is based on initial
routes for the vehicles before the disruption occurred. The objective is to maximize the
total protected value while minimizing the deviation from the initial routes. The deviation
can be represented as the number of asset/vehicle reassignments, i.e. for each vehicle the
number of assets added to or removed from its pre-disruption route.

An important property of the dynamic APP is that an asset that does not participate
to the total protected value can be visited outside of its time window. Assets that are not
protected in the solution do not have to be removed from the routes of any vehicle, hence
entailing no deviation. In other words, an asset that does not improve the first objective
(total protected value) does not degrade the second one (deviation). It is thus always
possible to build a solution with null deviation from the pre-disruption routes, even if a
route became infeasible due to the disruption.

3 Valid Inequalities

We studied the problem to deduce valid inequalities based on properties specific to its
bi-objective and dynamic nature. We will first present sets of valid inequalities that bound
the deviation implied by the protection of an asset, based on their resource requirements.
We will then present incompatibility between assets based on their time window, and
deduce a set of valid inequalities. We will finally present a set of valid inequalities that
combine incompatibility between assets and resource requirements.

3.1 Deviation-based inequalities

In a non-dominated solution, if an asset has been added to the route of at least one
vehicle, the asset is protected in the solution. Otherwise, we could construct a feasible
solution with the same protected value but strictly lower deviation (hence dominating our
original solution) by simply not adding this asset to the route of the vehicle. Given upper
and lower bounds ub+v (i) and lb+v (i) on the number of vehicles required to protect asset i,
we have that:

ub+v (i)Yi ≥
∑
p∈P

Z+
ip ≥ lb+v (i)Yi (1)

where Yi is the decision variable representing the protection status of asset i, P the set
of available vehicles, and Z+

ip the decision variable representing the addition of asset i to
the route of vehicle p.

We compute values for these bounds based on the resource requirement of the asset
and the capability vector of the available vehicles.

The lower bound lb+v (i) is the minimum number of vehicles required to cover the resource
requirement of asset i. We can compute this bound by solving a Mixed Integer Program
(MIP) for each asset, that can be written as a multi-dimensional knapsack problem. The
size of the MIP is small enough to efficiently compute the value of the lower bound in spite
of the problem being NP-hard.
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The upper bound lb+v (i) is the minimum number of vehicles required to cover the
resource requirement of asset i without adding a redundant vehicle. A vehicle is redundant
if the resource requirement of the asset is still covered if the vehicle is not considered.
Thus, adding a redundant vehicle to the protection of an asset does not improve the total
protected value but increases the deviation. We can compute this bound by solving a MIP
for each asset. We believe this problem to be NP-hard, but the size of the MIP is small
enough for the computation to be efficient.

Similar bounds are computed for the number of removals from routes for asset i.

3.2 Incompatibility/vehicle clique inequalities

Two assets i and j are incompatible/vehicle for vehicle p if vehicle p cannot visit asset i
and asset j within their respective time windows. In other words, if vehicle p visits one of
the asset at the opening of its time window, it always reaches the second asset after the
closing of its time window.

Let Ginc/v
p be the graph of incompatibilities between assets for vehicle p. Each node of

this graph is an asset of our problem. There is an edge between two nodes i and j if assets
i and j are incompatible/vehicle. A clique is a subset of nodes in an undirected graph that
are pairwise adjacent. Vehicle p can visit at most one of the asset of the clique within
their time window, which is necessary for the asset to be protected. Thus, we define valid
inequalities to ensure that at most one asset is protected among the assets of the clique
visited by vehicle p.

3.3 Incompatibility/solution clique inequalities

We call two assets i and j incompatible/solution if assets i and j are incompati-
ble/vehicle for every available vehicle. Consider C a clique of incompatible/solution assets.
Then, each vehicle can be used for the protection of at most one asset of C.

Let ub(C) be the maximum number of assets in C that can be protected using every
vehicle at most once, based on the resource requirements of the assets. We thus have that:∑

i∈C
Yi ≤ ub(C) (2)

We can compute ub(C) by solving a MIP for each clique C. The problem is NP-hard,
but the size of the MIP is small enough for the computation to be efficient.

4 Results

We generated 10 test instances following the specifications of Van der Merwe et al.
(2015). We implemented the model in Julia. We solved the model with CPLEX 12.8, on a
computer with an Intel Core i7-8550U processor and 8GB of RAM.

For every instance, we generated the extreme point allowing for maximum deviation
for three different vehicle breakdowns, with a time limit of 1800 seconds. Table 1 shows
the average solve time to compute this extreme point for instances based on which valid
inequalities were added to the model. The number of instances solved within the time limit
is shown in parenthesis.

We greatly improved the model when introducing our valid inequalities. Incompatibil-
ity/vehicle inequalities yield the best result: we solved 6 more instances with 50 assets and
5 more with 60 assets within the time limit. On average, we reduced by a third the solve
time for the 4 instances solved to optimality with the initial model.
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Table 1. Generation of one extreme point: solve time in seconds, number of optimal solutions

Instance size (number of assets)
Valid inequalities 30 40 50 60

None 42 (30/30) 29 (20/30) 58 (09/30) 458 (04/30)
Deviation 22 (30/30) 27 (20/30) 198 (09/30) 268 (03/30)
Inc/veh 1.4 (30/30) 22 (25/30) 267 (15/30) 841 (09/30)
Inc/sol 12 (30/30) 28 (24/30) 37 (11/30) 474 (04/30)

All above 1.2 (30/30) 61 (26/30) 252 (18/30) 518 (11/30)

Deviation-based inequalities greatly improve the relaxation of the model. However, as
we compute the extreme point with highest deviation, the introduction of these inequalities
alone did not seem to have an impact on the solve time. But, when combined with incom-
patibility/vehicle inequalities, they solved two more instances than incompatibility/vehicle
inequalities alone, and almost halved the solve time for the 9 instances already solved
within the time limit.

5 Conclusion

We deduced from the properties and structure of our problem valid inequalities that
improved the resolution of our model. We improved the viability of using this model to
evaluate the quality of the choices made by IMTs in retrospect. Additional inequalities or
changes to the model would be needed to solve large-size instances more consistently.

However using this model for providing in real time the exact Pareto front when a
disruption occurs seems out of reach. We would need to consider a heuristic approach to
obtain a good approximation of the Pareto front in reasonable time.
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