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Abstract

In industrial Computer-Assisted Engineering, it is common to deal with vector fields
or multiple field variables. In this paper, different vector-valued extensions of the
Empirical Interpolation Method (EIM) are considered. EIM has been shown to
be a valuable tool for dimensionality reduction, reduced-order modeling for non-
linear problems and/or synthesis of families of solutions for parametric problems.
Besides already existing vector-valued extensions, a new vector-valued EIM – the
so-called VEIM approach – allowing interpolation on all the vector components is
proposed and analyzed in this paper. This involves vector-valued basis functions,
same magic points shared by all the components and linear combination matrices
rather than scalar coefficients. Coefficient matrices are determined under constraints
of point-wise interpolation properties for all the components and exact reconstruction
property for the snapshots selected during the greedy iterative process. For numer-
ical experiments, various vector-valued approaches including VEIM are tested and
compared on various one, two and three-dimensional problems. All methods return
robustness, stability and rather good convergence properties as soon as the Kol-
mogorov width of the dataset is not too big. Depending of the use case, a suitable and
convenient method can be chosen among the different vector-valued EIM candidates.
KEYWORDS:
reduced-order model; empirical interpolation method; vector-valued functions; vector fields; interpolation
property; exactness property; magic points; reduced basis

1 INTRODUCTION

Advanced engineering design and optimization processes frequently need the exploration of admissible designs in large de-
sign domains and the evaluation of quantities of interest (QoI) with respect to some design parameters subject to admissibility
constraints3. In some cases, QoI can be reduced to a set of physical or cost-effective values, giving enough information on the
system efficiency for final decision making. QoI can be either measured on real prototype systems, or numerically evaluated us-
ing digital twins. For three-dimensional Physics-based systems, QoI are usually functionals of some physical fields that can be
either scalar (temperatures, pressures, chemical concentrations, ...) or intrinsically vector-valued (fluid velocities in CFD, dis-
placements for structural mechanics, magnetic fields, ...). For multi-objective design and optimization problems, it is usual to
find a set of admissible non-dominated solutions4. The selection of final designs can be achieved by expressing preferences on
physical fields, or evaluating second-level QoI that are again functionals of them.

0Abbreviations: EIM, empirical interpolation method; VEIM, vector-valued empirical interpolation method; POD, proper orthogonal decomposition
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Today’s computer-assisted engineering and finite element-type analysis provide high-fidelity (HF) numerical solutions of the
underlying physical problems. However, fine space and time resolutions lead to expensive and time-consuming computations
even on high-performance computing (HPC) facilities. This is even more true for parameterized problems since each parameter
sample requires a high-fidelity computation for field and QoI evaluation. The optimization process can be accelerated by the
help of some surrogate models3 for which an evaluation takes far less time with sometimes two or three orders of magnitudes of
speedup. Of course, the construction of the surrogate models rely on a set of preliminary HF computations as training datasets,
within a general framework of design of computer experiment (DoCE). One can derive surrogate models for both QoI and
scalar/vector fields. The current trend is to use Machine Learning (ML) or Artificial Intelligence (AI) type tools like artificial
neural networks (ANN) and deep learning (DL). A related slightly older methodology is the design of reduced-order models
(ROM)5. One can consider two main families of ROM approaches: the intrusive (model-based) one and the non-intrusive (data-
driven) one. In the intrusive ROM, a dimensionality reduction is first achieved. Then solutions of an approximate problem are
searched in a low-order vector space or submanifold. It is usually based on a low-order Galerkin-type projection method. The
non-intrusive approach is rather related to a data-driven machine-learning (ML) method with nonlinear regression techniques.
It is sometimes possible to include physical knowledge or expected physical properties (invariance, law of thermodynamics,
conservation) in the design of non-intrusive approaches, leading to the so-called Physics-informed (PI) or Physics-aware (PA)
data-driven methods6,7.

For most of the physical vector-valued fields, the components of the vectors are strongly correlated. This is the case for example
in CFD for incompressible fluids where the velocity fields are expected to be divergence-free. In the case of the incompressible
Navier-Stokes equations, the pressure acts as a Lagrange multiplier on the incompressibility constraint and can be interpreted
as a sensitivity measure to maintain the zero-divergence condition locally. So the pressure is strongly correlated to the velocity
field, and one could actually consider a full-state vector of velocity-pressure variables.

Let us now focus in more details on surrogate models of parameterized vector fields: consider a general set  of 𝝁-
parameterized vector-valued smooth functions 𝒖𝜇 defined on a spatial bounded domain of ℝ𝑛, 𝑛 ∈ {1, 2, 3} with each component
of 𝒖𝜇 living is a functional space 𝑋(Ω),

 = {𝒖𝜇 ∈ [𝑋(Ω)]𝑑 , 𝝁 ∈ }

where  is a compact set of ℝ𝑝 representing the parameter domain. We would like to approximate or interpolate elements 𝒖𝜇
of  by approximate functions living in a low-order vector space 𝑊 . One has to achieve the following points: i) determine the
correct low-order dimension from a threshold accuracy criterion; ii) build the family of basis functions that span 𝑊 ; iii) finally
characterize the projection or interpolation operator. Proper orthogonal decomposition (POD)21 is probably one of the most
known dimensionality reduction techniques. It is nothing else but a singular value decomposition (SVD) performed on a family
of parameterized functions. In a Hilbert space, POD is proven to be the optimal orthogonal projection approach when linear
submanifolds are considered. POD modes are searched as linear combinations of some velocity snapshots. In the CFD Navier-
Stokes context, since the snapshots are divergence-free, the POD modes keep this property, making approximate projected
solutions intrinsically divergence-free. It has been observed that POD basis functions are ordered global modes of increasing
frequency (because of the underlying spectral principle). However, since POD approximation is a projection-based method, the
snapshot solutions are not generally perfectly preserved by the orthogonal projection.

Another successful projection method is the reduced basis (RB) approach which is formulated as a greedy iterative process.
In the offline stage, at the current iteration, the snapshot function that realizes the maximum projection error is selected. The
error function is used as the incremental new basis function, then made orthogonal by a standard Gram-Schmidt algorithm.
Since the error projection now belongs to the updated inflated vector space 𝑊 , the updated projection of the selected snapshot
is the snapshot itself. By recurrence, one can prove that all the previously selected snapshots are perfectly reproduced by the RB
projection method. This property will be referred to as the exactness property in the sequel on the paper.

Alternatively, one can also consider interpolation methods. The so-called empirical interpolation method (EIM)1,2 is for-
mulated as a greedy algorithm that determines suitable spatial interpolation points and builds empirical basis functions from
selected snapshots. At a current EIM iteration, the snapshot that returns the maximum interpolation error (in 𝐿∞ norm) is se-
lected. The spatial point where the maximum 𝐿∞ error is reached serves as the new additional interpolation point (also called
magic point in the literature). The interpolation error function is used as the additional basis function and, at least, locally cor-
rects the interpolation errors. Numerical experiments have shown that EIM returns quite good accuracy and stability properties.
In particular, numerical evaluations of the Lebesgue constant show a reasonable growth rate with respect to the number of ba-
sis functions, providing a stable interpolation process without reported Runge-type effects (spurious oscillations). For the same
reasons as for the RB method, EIM has the exactness property of perfect reconstruction of the selected snapshots.
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As an interpolation method, EIM has different key advantages compared to a projection method. In the context of intrusive
ROMs, it can be used to deal with nonlinear terms in the partial differential equations1,2. In the more general context of inter-
polation/approximation, during the online stage only the values of the fields at some locations of interest – the so-called magic
points – are needed. This ability to reconstruct the fields from only pointwise informations makes it suitable for the use with
sensor-based systems and data-assimilation methods11. Last but not least, EIM can return enlightening information to design the
optimal placement of sensors on physical systems, especially when numerical models need to be periodically re-calibrated and
fed by external real data sources. We believe that the EIM also has potentials in the Data Science and Machine Learning (ML)
context. EIM can be used as an auto-encoder of high-dimensional data (discretized functions) while the values of the fields at
the magic points are the encoded data.

To our knowledge, the first work that considers a vector-valued extension of EIM is that of T. Tonn in his PhD Thesis12 with the
so-called multi-component EIM. At a current EIM iteration, the worst 𝐿∞ interpolation error is searched among the parameter
set and all the components of the field. Then a basis function is added in order to correct the error, allowing an interpolation
property on the selected field component at the new spatial magic point. This approach has been shown to be robust, stable
and convergent. The multi-component EIM has the exactness property of the selected snapshots and preserves linear invariant
quantities. However, the interpolation property holds on only one component of the vector-valued field. It would be interesting
to look for the vector-valued approach that ensures the interpolation on all the components. This is one of the motivation of this
article.

To complete the related bibliography, a recent work that extends EIM to the case of vector fields is the recent paper by Silva
et al. in 202114 in this Journal. The authors study two different implementations of 2D vector fields. The first method called
"EIM-orto" considers component-by-component interpolation, which can be expressed in vector form by considering diagonal
coefficient matrices. A remark is that the "EIM-orto" depends (by design) on the choice of reference frame (namely the canonical
basis of ℝ2). The "EIM-orto" has been mainly introduced for comparison with a more sophisticated, genuinely multidimensional
vector-valued interpolation. The so-called "EIM-roto" considers a wise condition of invariance under rotation of the reference
frame as a closure condition. By doing this, there are as many unknown coefficients as interpolation conditions, leading to the
existence of a unique solution of the leading system of linear equations. Through their experimental results on the lid driven
cavity benchmark, the authors show that the "orto" was unable to perform an effective reconstruction of the fields while the
"roto" achieved rather near optimal performances (compared to POD) with velocity-based basis functions providing meaningful
details in the flow. Some of the EIM vector basis functions contribute to the reconstruction by providing localized details, what
is of course not the case with POD modes. In Silva et al14, it is not explained if the "roto" can be easily extended to vector fields
of dimension greater than two, but is at the aim of current research since future applications on problems of larger complexity
are mentioned in the conclusions. Remark that the exactness property is not a "closure" condition in the "roto" approach.

For other related works, let us also mention the work by Gstalter et al.13 who also consider a multi-component EIM variant
approach for problems of 3D vehicle car crash dynamics. The EIM method is used as row and column (space and time) selector
within a large dataset of displacement fields. It can been interpreted as an original row-column matrix selection for CUR-type ma-
trix factorization. The CUR factorization is then used to derive a low-order tensor decomposition of the family of parameterized
displacement fields. The resulting ReCUR (Regression-CUR) method is shown to return efficient surrogate models that involve
only few high-fidelity computations while returning accurate-enough solutions for use in a parameter optimization process.

This article will focus on two main aspects. First, a vector-valued extension of the original EIM with full interpolation property
(for all the components) as well as exact reproduction property of the selected snapshots is proposed. Coefficients of linear com-
bination actually are replaced by square coefficient matrices that fulfill two constraints of interpolation and exactness. Secondly,
a systematic comparison of numerical results returned by both existing and newly proposed vector-valued EIMs is achieved.

The paper is structured as follows. First, in Section 2 the seminal scalar EIM will be formulated and revisited in a form that
will be suited to the next developments. Section 3 will deal with various vector-valued EIM extensions, including VEIM. In
Section 4, full details on the effective construction of the coefficient matrices for VEIM will be given. The different methods will
be validated on some cases including the stationary and nonstationary lid driven cavity benchmark20 but also a large-scale three-
dimensional high-Reynolds number turbulent flow toward a body with parametrized shapes, using a LES turbulence model. The
paper will end up with some concluding remarks and perspectives of use.
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2 INTRODUCING AND REVISITING THE EIM ALGORITHM

As a starting point, the scalar EIM algorithm is reminded but formulated in a slightly different way from its seminal presentation
by Barrault et al1. This equivalent rewriting will be useful in the sequel for a facilitated explanation of the extension of EIM to
the vector-valued case.

Let Ω be a bounded domain of ℝ𝑛, 𝑛 ∈ {1, 2, 3}. Let us consider a smooth Banach space 𝑋(Ω) such that 𝑋(Ω) ⊂ C 0(Ω̄).
Let  be a compact set of ℝ𝑝 representing a domain of definition of some parameter vectors 𝝁. The objective of this work is to
build an accurate interpolation operator which is suitable for the set of parametric real-valued scalar functions

 = {𝑢𝜇 ∈ 𝑋(Ω), 𝝁 ∈ }.

The EIM builds the interpolation operator in an iterative greedy way, i.e. by incremental enrichment. Assume that the EIM
iteration (𝑚−1) has been completed. The interpolator I (𝑚−1) at iteration (𝑚−1) is supposed to fulfill the two following properties:

• Interpolation property: there are (𝑚 − 1) interpolation points 𝒙𝑖, 1 ≤ 𝑖 ≤ 𝑚 − 1 such that, for 𝑢 ∈ 𝑋(Ω),
I (𝑚−1)𝑢(𝒙𝑖) = 𝑢(𝒙𝑖), 1 ≤ 𝑖 ≤ 𝑚 − 1. (1)

• Exactness property: there are (𝑚 − 1) parameter vectors 𝝁𝑖 ∈ , 1 ≤ 𝑖 ≤ 𝑚 − 1 such that
I (𝑚−1)𝑢𝜇𝑖

(𝒙) = 𝑢𝜇𝑖
(𝒙) ∀𝒙 ∈ Ω, 1 ≤ 𝑖 ≤ (𝑚 − 1). (2)

For the sake of simplicity, in the sequel we will use the condensed notations 𝑢𝑖 = 𝑢𝜇𝑖
. Consider an accuracy threshold criterion

𝜀 > 0 and assume that at current iterate (𝑚 − 1),
max
𝝁∈

‖𝑢𝜇 − I (𝑚−1)𝑢𝜇‖𝐿∞(Ω) > 𝜀. (3)
Then a 𝑚-th EIM iteration is needed. The 𝑚-th interpolator I (𝑚) is searched in the form

I (𝑚)𝑢(𝒙) = I (𝑚−1)𝑢(𝒙) + 𝛼𝑚(𝑢) 𝑞𝑚(𝒙), 𝑢 ∈ 𝑋(Ω) (4)
where 𝑞𝑚(𝒙) is the 𝑚-th EIM basis function and 𝛼𝑚(𝑢) is a real coefficient. The procedure to get the 𝑚-th interpolation point 𝒙𝑚 ∈
Ω̄ and the 𝑚-th basis function 𝑞𝑚 is as follows: successively compute

𝝁𝑚 = argmax
𝝁∈

‖𝑢𝜇 − I (𝑚−1)𝑢𝜇‖𝐿∞(Ω), 𝑢𝑚 = 𝑢𝜇𝑚
, (5)

𝒙𝑚 = argmax
𝒙∈Ω̄

|𝑢𝑚(𝒙) − I (𝑚−1)𝑢𝑚(𝒙)| (6)
and

𝑞𝑚(𝒙) = 𝑢𝑚(𝒙) − I (𝑚−1)𝑢𝑚(𝒙). (7)
The new basis function 𝑞𝑚 is computed in order to correct the worst case of interpolation error after the (𝑚 − 1)-th iterate. For
any function 𝑢 ∈ 𝑋(Ω), the linear combination coefficient 𝛼𝑚(𝑢) will be computed as

𝛼𝑚(𝑢) =
𝑢(𝒙𝑚) − I (𝑚−1)𝑢(𝒙𝑚)

𝑢𝑚(𝒙𝑚) − I (𝑚−1)𝑢𝑚(𝒙𝑚)
. (8)

Note that the denominator of (8) is not zero because of the assumption (3). Then it is an easy matter of fact to prove by recurrence
arguments both interpolation and exactness properties:

• Interpolation property:
I (𝑚)𝑢(𝒙𝑖) = 𝑢(𝒙𝑖), 1 ≤ 𝑖 ≤ 𝑚;

• Exactness property:
I (𝑚)𝑢𝑖(𝒙) = 𝑢𝑖(𝒙) ∀𝒙 ∈ Ω, 1 ≤ 𝑖 ≤ 𝑚.

The proof actually arises from the two following assertions of the following proposition:
Proposition 1. 1. The 𝑚-th basis function 𝑞𝑚 satisfies 𝑞𝑚(𝒙𝑖) = 0 for 1 ≤ 𝑖 ≤ (𝑚 − 1);

2. The linear combination coefficients 𝛼𝑚 evaluated at the selected functions 𝑢𝑖, 𝑖 = 1, ..., 𝑚 satisfy
𝛼𝑚(𝑢𝑖) = 0 for 1 ≤ 𝑖 ≤ 𝑚 − 1, (9)
𝛼𝑚(𝑢𝑚) = 1. (10)
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The first property of Proposition 1 shows that 𝑞𝑚 does not affect the interpolation values at the first (𝑚 − 1) magic points.
On the other side, thanks to (8) we have 𝛼𝑚(𝑢)𝑞𝑚(𝒙𝑚) = 𝑢(𝒙𝑚) − I (𝑚−1)𝑢(𝒙𝑚) enabling the additional interpolation property
I (𝑚)𝑢(𝒙𝑚) = 𝑢(𝒙𝑚) by applying (4). The second property of Proposition 1 shows that the previous exactness properties at rank
(𝑚 − 1) are kept and, since 𝛼𝑚(𝑢𝑚) = 1 and because of (7) we have I (𝑚)𝑢𝑚 = 𝑢𝑚.

To end up with and in order to completely define EIM, the first iteration (𝑚 = 1) is achieved by considering I (0)𝑢 = 0. The
algorithm stops at iteration (𝑚) once the threshold criterion max

𝝁∈
‖𝑢𝜇 − I (𝑚)𝑢𝜇‖𝐿∞(Ω) ≤ 𝜀 holds. As mentioned in Barrault et

al1, the stopping iteration depends on the Kolmogorov width of the set  , i.e the ability of  to be represented in a low-order
manifold.

The practical derivation of EIM for functions in discrete (finite element) spaces with discrete finite parameter sampling deals
with datasets in matrix form, allowing for an easy search of worst cases of interpolation (selection of rows and columns). It
is worth mentioning that the discrete EIM has strong connections with the so-called adaptive cross approximation (ACA) for
matrices8,9,10. ACA enables a low-order representation and matrix factorization where particular columns are selected following
the same ideas of adaptive correction.

3 INTRODUCING REGULAR AND VARIANT VECTOR-VALUED EIM EXTENSIONS

The general objective of this paper is to consider EIM-type algorithms in the case of vector-valued functions. Let us now consider
a set of parametric vector-valued functions

 = {𝒖𝜇 ∈ [𝑋(Ω)]𝑑 , 𝝁 ∈ }

with 𝑑 ≥ 2. In the sequel ⟨., .⟩ℝ𝑑 will denote the Euclidean scalar product in ℝ𝑑 and ‖.‖ℝ𝑑 =
√

⟨., .⟩ℝ𝑑 the associated norm.
Among other things, we will consider the usual 𝐿∞ norm for vector-valued functions defined on Ω̄:

‖𝒖‖∞ = sup
𝒙∈Ω̄

‖𝒖(𝒙)‖ℝ𝑑 .

3.1 Component-by-component EIM
The first direct and straightforward approach is to apply the scalar EIM on each component (𝑢𝑘)𝜇, 𝑘 = 1, ..., 𝑑. In that case, for
each 𝑘, we will define a componentwise interpolation operator I (𝑚)

𝑘 and an interpolation formula
I (𝑚)

𝑘 𝒖(𝒙) = I (𝑚−1)
𝑘 𝒖(𝒙) + 𝛼𝑘,𝑚(𝒖) 𝑞𝑘,𝑚(𝒙) (11)

for some coefficient 𝛼𝑘,𝑚(𝒖) and scalar-valued function 𝑞𝑘,𝑚 (depending on 𝑘). Remark that for each 𝑘, there is a dedicated set
of magic points and a family of (scalar-valued) basis functions. One can of course merge of the sets of magic points and basis
functions, but the approach appears not to be optimal. It cannot neither return vector-valued basis functions, and linear invariant
quantities are not generally preserved.

3.2 Multi-component EIM
Let us introduce that multi-component EIM extension as proposed by Tonn12. At current iterate 𝑚, a new magic parameter 𝝁𝑚
is searched as

𝜇𝑚 = argmax
𝝁∈

max
𝑘∈{1,...,𝑑}

‖

‖

‖

(

𝒖𝜇 − I (𝑚−1)𝒖𝜇
)

𝑘
‖

‖

‖𝐿∞
. (12)

Then we get a magic component
𝑘𝑚 = arg max

𝑘∈{1,...,𝑑}

‖

‖

‖

(

𝒖𝜇𝑚
− I (𝑚−1)𝒖𝜇𝑚

)

𝑘
‖

‖

‖𝐿∞
, (13)

a magic spatial point
𝒙𝑚 = argmax

𝒙∈Ω̄

|

|

|

(

𝒖𝜇𝑚
(𝒙) − I (𝑚−1)𝒖𝜇𝑚

(𝒙)
)

𝑘
|

|

|

(14)
and the new (vector valued) basis function

𝒒𝑚(𝒙) =
𝒖𝜇𝑚

(𝒙) − I (𝑚−1)𝒖𝜇𝑚
(𝒙)

(

𝒖𝜇𝑚
(𝒙𝑚) − I (𝑚−1)𝒖𝜇𝑚

(𝒙𝑚)
)

𝑘𝑚

. (15)
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The interpolation operator is in the form
I (𝑚)𝒖(𝒙) = I (𝑚−1)𝒖(𝒙) + 𝛼𝑚(𝒖) 𝒒𝑚(𝒙) (16)

with a scalar coefficient 𝛼𝑚(𝒖) such that I (𝑚)(𝑢𝑘𝑚)(𝒙𝑚) = (𝑢𝑘𝑚)(𝒙𝑚). This variant approach is elegant since there are 𝑚 magic
points and 𝑚 (vector-valued) basis functions at iterate 𝑚. It is clear that the snapshots 𝒖𝜇𝑚

are perfectly reproduced by the
interpolation operator. Moreover, since 𝒒𝑚 ∈ span (𝒖𝜇1

, ..., 𝒖𝜇𝑚

), linear invariant quantities are preserved by the interpolation.
However, the interpolation property holds on only one component of the vector-valued field at the current magic point.

3.3 Least-square empirical method
For the sake of completeness, we decide to introduce another variant approach that shows strong similarity with EIM but that
is not an interpolation method in a strict sense. Here a reconstruction operator R(𝑚) rather than an interpolation one is used.
Consider

𝝁𝑚 = argmax
𝝁∈

max
𝒙∈Ω̄

‖𝒖𝜇(𝒙) − R(𝑚−1)𝒖𝜇(𝒙)‖ℝ𝑑 , 𝒖𝑚 = 𝒖𝜇𝑚
, (17)

𝒙𝑚 = argmax
𝒙∈Ω̄

‖𝒖𝑚(𝒙) − R(𝑚−1)𝒖𝑚(𝒙)‖ℝ𝑑 , (18)
𝒒𝑚(𝒙) = 𝒖𝑚(𝒙) − R(𝑚−1)𝒖𝑚(𝒙). (19)

and the updated reconstruction operator
R(𝑚)𝒖(𝒙) = R(𝑚−1)𝒖(𝒙) + 𝛼𝑚(𝒖) 𝒒𝑚(𝒙) (20)

with a scalar coefficient 𝛼𝑚(𝒖) that minimizes the least square error
𝛼𝑚(𝒖) = arg min

𝛼∈ℝ
‖𝒖(𝒙𝑚) − R(𝑚)𝒖(𝒙𝑚)‖2ℝ𝑑 (21)

It is easy to check that the solution is given by
𝛼𝑚(𝒖) =

⟨𝒖(𝒙𝑚) − R(𝑚−1)𝒖(𝒙𝑚), 𝒖𝑚(𝒙𝑚) − R(𝑚−1)𝒖𝑚(𝒙𝑚)⟩ℝ𝑑

‖𝒖𝑚(𝒙𝑚) − R(𝑚−1)𝒖𝑚(𝒙𝑚)‖2ℝ𝑑

(22)

Let us remark that 𝛼𝑚(𝒖𝑚) = 1. This approach perfectly reproduces the selected snapshots. Moreover linear invariant quantities
are preserved since the basis functions are linear combinations of the selected snapshots. Rather than being interpolating, the
least-square empirical method balances the approximation errors over all the vector components at current magic point.

3.4 Summary of properties and comparative table
So far, different vector-valued EIM extensions and a variant approach have been proposed. Each of them has its own properties.
As a summary, a comparative table 1 below is given.

# of magic pts Combination coefficients Exactness property Pres. of linear invariant qty
EIM scal 𝑚 × 𝑑 scalar (1 for each component) No No

Multi-comp. 𝑚 scalar Yes Yes
LS EM 𝑚 scalar Yes Yes

Table 1 Comparative table of the different EIM variant approaches seen so far : component-by-component (EIM scal), multi-
component EIM, least-square empirical method (LS EM).

In the next section, we explore the possibility to achieve a vector-valued extension of EIM that interpolates the vector field for
all the components at the spatial magic points. This may be of interest for example in the data assimilation context when there
is only few sensors. If 𝑚 sensors return a vector-valued measurement of size 𝑑, one has 𝑚× 𝑑 values for the identification of the
system. We have a better knowledge of the system than using scalar-valued sensors.
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We are going to build the so-called Vector-EIM (VEIM) method. Contrary to the EIM approaches seen so far, VEIM uses
matrix coefficients. The construction is made in order to fulfil both interpolation and exactness properties. Unfortunately, we
will show that linear invariant quantities can only by reproduced at the order of the accuracy. Following the structure of Table 1,
we will have for VEIM :

# of magic pts Combination coefficients Exactness property Pres. of linear invariant qty
VEIM 𝑚 square matrix form Yes No

4 CONSTRUCTION OF THE VEIM METHOD

In this section, In the previous section, the scalar EIM properties of interpolation and exactness have been emphasized. An
interesting question is to establish whether it is possible to define a vector-valued EIM interpolator I (𝑚) with similar properties:

• Interpolation property: for 𝒖 ∈ [𝑋(Ω)]𝑑 ,
I (𝑚)𝒖(𝒙𝑖) = 𝒖(𝒙𝑖), 1 ≤ 𝑖 ≤ 𝑚; (23)

• Exactness property:
I (𝑚)𝒖

𝑖
(𝒙) = 𝒖

𝑖
(𝒙) ∀𝒙 ∈ Ω, 1 ≤ 𝑖 ≤ 𝑚. (24)

Note that each interpolation condition I (𝑚)𝒖(𝒙𝑖) = 𝒖(𝒙𝑖) actually expresses 𝑑 constraints. With 𝑚 magic points, there are 𝑚×𝑑
constraints. Using 𝑚 scalar linear combination coefficients 𝛼𝑘(𝒖), 𝑘 = 1, ..., 𝑚 would only provide 𝑚 degrees of freedom. The
only possibility for more degrees of freedom is to consider square coefficient matrices 𝐴𝑘(𝒖) ∈ M𝑑(ℝ) with an interpolation
operator written in incremental form

I (𝑚)𝒖(𝒙) = I (𝑚−1)𝒖(𝒙) + 𝐴𝑚(𝒖) 𝒒𝑚(𝒙). (25)
Now we have 𝑚× 𝑑2 degrees of freedom for 𝑚× 𝑑 interpolation conditions. But the 𝑚 exactness properties (24) have also to be
satisfied, leading to additional constraints. At this stage, it is unclear how to fulfill the exactness property, how many independent
conditions does this imply, or even if it can be attainable/achievable.

Following the scalar EIM construction, let us consider a greedy iterative process where, from the knowledge of I (𝑚−1), a new
magic point 𝒙𝑚 and a new vector-valued basis function 𝒒𝑚 at iterate (𝑚) are computed as follows:

𝝁𝑚 = argmax
𝝁∈

max
𝒙∈Ω̄

‖𝒖𝜇(𝒙) − I (𝑚−1)𝒖𝜇(𝒙)‖ℝ𝑑 , 𝒖𝑚 = 𝒖𝜇𝑚
, (26)

𝒙𝑚 = argmax
𝒙∈Ω̄

‖𝒖𝑚(𝒙) − I (𝑚−1)𝒖𝑚(𝒙)‖ℝ𝑑 , (27)
𝒒𝑚(𝒙) = 𝒖𝑚(𝒙) − I (𝑚−1)𝒖𝑚(𝒙). (28)

Proposition 1 of Section 2 gives us a hint on the proper conditions on the matrix𝐴𝑚(𝒖) to achieve both interpolation and exactness
properties. By recurrence, one can expect to have 𝒒𝑚(𝒙𝑖) = 𝟎 pour 1 ≤ 𝑖 ≤ (𝑚 − 1). As a direct consequence, we would have
I (𝑚)𝒖(𝒙𝑖) = I (𝑚−1)𝒖(𝒙𝑖) = 𝒖(𝒙𝑖), 1 ≤ 𝑖 ≤ (𝑚 − 1). For 𝒖 ∈ [𝑋(Ω)]𝑑 , the interpolation constraint at the new magic point 𝒙𝑚
reads

I (𝑚)𝒖(𝒙𝑚) = I (𝑚−1)𝒖(𝒙𝑚) + 𝐴𝑚(𝒖) 𝒒𝑚(𝒙𝑚) = 𝒖(𝒙𝑚)
that is

𝐴𝑚(𝒖)
(

𝒖𝑚(𝒙𝑚) − I (𝑚−1)𝒖𝑚(𝒙𝑚)
)

= 𝒖(𝒙𝑚) − I (𝑚−1)𝒖(𝒙𝑚).
Regarding the exactness constraints, the matrices 𝐴𝑚(𝒖𝑖), 1 ≤ 𝑖 ≤ 𝑚 must satisfy the following identities:

I (𝑚)𝒖𝑖(𝒙) = I (𝑚−1)𝒖𝑖(𝒙) + 𝐴𝑚(𝒖𝑖) 𝒒𝑚(𝒙) = 𝒖𝑖(𝒙) ∀𝒙 ∈ Ω, 1 ≤ 𝑖 ≤ (𝑚 − 1), (29)
I (𝑚)𝒖𝑚(𝒙) = I (𝑚−1)𝒖𝑚(𝒙) + 𝐴𝑚(𝒖𝑚) 𝒒𝑚(𝒙) = 𝒖𝑚(𝒙) ∀𝒙 ∈ Ω. (30)

Under the recurrence assumption I (𝑚−1)𝒖𝑖 = 𝒖𝑖, 1 ≤ 𝑖 ≤ (𝑚 − 1), we must have 𝐴𝑚(𝒖𝑖) = 0𝑑×𝑑 for 1 ≤ 𝑖 ≤ (𝑚 − 1). More-
over, from (30) and (28) we must have 𝐴𝑚(𝒖𝑚) = 𝐼𝑑 . To summarize, for interpolation and exactness properties, the following
conditions have to be met:

For 𝒖 ∈ [𝑋(Ω)]𝑑 , 𝐴𝑚(𝒖)
(

𝒖𝑚(𝒙𝑚) − I (𝑚−1)𝒖𝑚(𝒙𝑚)
)

= 𝒖(𝒙𝑚) − I (𝑚−1)𝒖(𝒙𝑚), (31)
𝐴𝑚(𝒖𝑖) = 0𝑑×𝑑 for 1 ≤ 𝑖 ≤ (𝑚 − 1), (32)
𝐴𝑚(𝒖𝑚) = 𝐼𝑑 . (33)
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The condition (31) is the vector-valued extension of (8), while (32) and (33) are the generalizations of conditions (9) and (10).
In the next section, we will prove the existence of coefficient matrices 𝐴𝑚(𝒖) that satisfy (31)-(33).

5 EFFECTIVE CONSTRUCTION OF THE COEFFICIENT MATRICES

We now state the main theoretical result of this paper:
Theorem 1. There exists at least a mapping 𝒖 → 𝐴𝑚(𝒖) where all the conditions (31)-(33) are satisfied.

Theorem 1 is proved just below by giving an effective construction of 𝐴𝑚(𝒖). For the sake of simplicity of writing, the
following additional notations will be used:

𝒆(𝑚−1)𝑢 (𝒙) = 𝒖(𝒙) − I (𝑚−1)𝒖(𝒙), �̂�𝑚 =
𝒒𝑚(𝒙𝑚)

‖𝒒𝑚(𝒙𝑚)‖ℝ𝑑
.

Remark that 𝒒𝑚(𝒙𝑚) = 𝒆(𝑚−1)𝑢𝑚
(𝒙𝑚).

Proposition 2. For 𝒖 ∈ [𝑋(Ω)]𝑑 , consider the unit vector �̂�(𝑚−1)𝑢 defined as

�̂�(𝑚−1)𝑢 =

⎧

⎪

⎨

⎪

⎩

𝒆(𝑚−1)𝑢 (𝒙𝑚)

‖𝒆(𝑚−1)𝑢 (𝒙𝑚)‖ℝ𝑑

if 𝒆(𝑚−1)𝑢 (𝒙𝑚) ≠ 𝟎,

�̂�𝑚 otherwise.
(34)

Consider the matrix 𝐵𝑚(𝒖) such that
𝐵𝑚(𝒖) �̂�𝑚 = �̂�(𝑚−1)𝑢 , (35)
𝐵𝑚(𝒖) 𝒗 = 𝒗 ∀𝒗 ∈ (�̂�𝑚)⊥. (36)

Finally, consider
𝐴𝑚(𝒖) =

‖𝒆(𝑚−1)𝑢 (𝒙𝑚)‖ℝ𝑑

‖𝒆(𝑚−1)𝑢𝑚 (𝒙𝑚)‖ℝ𝑑

𝐵𝑚(𝒖). (37)

Then the conditions (31)-(33) are satisfied.

Proof. • First, for 1 ≤ 𝑖 ≤ (𝑚 − 1), we have 𝒆(𝑚−1)𝑢𝑖
(𝒙𝑚) = 𝟎 (exactness property at rank (𝑚 − 1)), then 𝐴𝑚(𝒖𝑖) = 0𝑑×𝑑 .

• For 𝒖 = 𝒖𝑚, we have �̂�(𝑚−1)𝑢𝑚
= �̂�𝑚, then (35) rewrites 𝐵𝑚(𝒖𝑚)�̂�𝑚 = �̂�𝑚 and, because of (36), we finally get 𝐵𝑚(𝒖𝑚) = 𝐼𝑑 ,

then 𝐴𝑚(𝒖𝑚) = 𝐼𝑑 .

• The last identity to check is (31) that also writes in the equivalent manner 𝐴𝑚(𝒖) 𝒆(𝑚−1)𝑢𝑚
(𝒙𝑚) = 𝒆(𝑚−1)𝑢 (𝒙𝑚). There are two

cases. If 𝒆(𝑚−1)𝑢 (𝒙𝑚) = 𝟎, it is expected that 𝐴𝑚(𝒖) = 0𝑑×𝑑 . Because of (37) the only thing to check is ‖𝐵𝑚(𝒖)‖ < +∞. But
in this case �̂�(𝑚−1)𝑢 = �̂�𝑚, then, because of (35),(36), we have 𝐵𝑚(𝒖) = 𝐼𝑑 . Consider now the most frequently occurring
and interesting case 𝒆(𝑚−1)𝑢 (𝒙𝑚) ≠ 𝟎. Then, using (37), (35) and (34) successively,

𝐴𝑚(𝒖) 𝒆(𝑚−1)𝑢𝑚
(𝒙𝑚) = 𝐵𝑚(𝒖)

𝒆(𝑚−1)𝑢𝑚
(𝒙𝑚)

‖𝒆(𝑚−1)𝑢𝑚 (𝒙𝑚)‖ℝ𝕕

‖𝒆(𝑚−1)𝑢 (𝒙𝑚)‖ℝ𝑑

= 𝐵𝑚(𝒖)�̂�𝑚 ‖𝒆(𝑚−1)𝑢 (𝒙𝑚)‖ℝ𝑑

= �̂�(𝑚−1)𝑢 ‖𝒆(𝑚−1)𝑢 (𝒙𝑚)‖ℝ𝑑

= 𝒆(𝑚−1)𝑢 (𝒙𝑚)

therefore (31) is verified.
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The practical construction of 𝐵𝑚(𝒖) satisfying (35),(36) is now given in details. Consider �̂�⊥
𝑚 = span(𝒓2,𝑚, ..., 𝒓𝑑,𝑚) the com-

plement vector subspace of �̂�𝑚 with 𝒓2,𝑚, ..., 𝒓𝑑,𝑚 being (𝑑 − 1) orthonormal unit vectors. Thanks to (35),(36), the matrix 𝐵′
𝑚(𝒖)equivalent to 𝐵𝑚(𝒖), represented in the basis B′

𝑚 =
(

�̂�𝑚, 𝒓2,𝑚, ..., 𝒓𝑑,𝑚
) is

𝐵′
𝑚(𝒖) =

⎡

⎢

⎢

⎢

⎢

⎣

⟨�̂�(𝑚−1)𝑢 , �̂�𝑚⟩ 0 … 0
⟨�̂�(𝑚−1)𝑢 , 𝒓2,𝑚⟩ 1 (0)

⋮ ⋱
⟨�̂�(𝑚−1)𝑢 , 𝒓𝑑,𝑚⟩ (0) 1

⎤

⎥

⎥

⎥

⎥

⎦B′

(38)

By denoting 𝑃𝑚 = col(�̂�𝑚, 𝒓2,𝑚, ..., 𝒓𝑑,𝑚) the (orthogonal) transformation matrix from the canonical basis to B′
𝑚, 𝐵𝑚(𝒖) is

computed as
𝐵𝑚(𝒖) = 𝑃𝑚 𝐵′

𝑚(𝒖)𝑃
𝑇
𝑚 . (39)

Note that the first column of 𝐵′
𝑚(𝒖) is nothing else but 𝑃 𝑇

𝑚 �̂�
(𝑚−1)
𝑢 . As a summary, the resulting offline stage of the VEIM algorithm

is given in Algorithm 1. From a set of 𝑚 vectors {𝒖(𝒙𝑖)}𝑖=1,...,𝑚 in ℝ𝑑 , the construction of the vector empirical interpolation

Algorithm 1 VEIM – Offline stage
Input: set of parametric vector-valued functions  = {𝒖𝜇, 𝝁 ∈ }
set accuracy criterion 𝜀𝑡𝑜𝑙
set 𝑚 = 0
for 𝝁 ∈ , set I (0)𝒖𝜇 = 0
𝑒𝑚𝑎𝑥 = 1 + 𝜀𝑡𝑜𝑙
while 𝑒𝑚𝑎𝑥 > 𝜀𝑡𝑜𝑙 do

𝑚 ← 𝑚 + 1
𝝁𝑚 = argmax

𝝁∈
max
𝒙∈Ω̄

‖𝒖𝜇(𝒙) − I (𝑚−1)𝒖𝜇(𝒙)‖ℝ𝑑 , 𝒖𝑚 = 𝒖𝜇𝑚

𝒙𝑚 = argmax
𝒙∈Ω̄

‖𝒖𝑚(𝒙) − I (𝑚−1)𝒖𝑚(𝒙)‖ℝ𝑑

𝒒𝑚 = 𝒖𝑚 − I (𝑚−1)𝒖𝑚
�̂�𝑚 =

𝒒𝑚(𝒙𝑚)
‖𝒒𝑚(𝒙𝑚)‖ℝ𝑑

for 𝝁 ∈  do
compute �̂�(𝑚−1)𝑢𝜇compute 𝐵′

𝑚(𝒖𝜇), 𝐵𝑚(𝒖𝜇), 𝐴𝑚(𝒖𝜇)
compute I (𝑚)𝒖𝜇 = I (𝑚−1)𝒖𝜇 + 𝐴𝑚(𝒖𝜇) 𝒒𝑚

end for
𝑒𝑚𝑎𝑥 = max

𝝁∈
‖𝒖𝜇 − I (𝑚)𝒖𝜇‖∞

end while
Outputs: 𝑚, parameters {𝝁𝑖}, points {𝒙𝑖}, functions {𝒒𝑖}, vectors {�̂�𝑖}, 𝑖 = 1, ..., 𝑚, maximum error 𝑒𝑚𝑎𝑥.

functions I (𝑚)𝒖 is given in Algorithm 2 (online stage). Let us emphasize that both offline and online algorithms are very easy

Algorithm 2 VEIM – Online stage
Input: 𝑚 vectors {𝒖(𝒙𝑖)}𝑖=1,...,𝑚 in ℝ𝑑

set I (0)𝒖 = 0
for 𝑖 = 0 to 𝑚 do

compute �̂�(𝑖−1)𝑢compute 𝐵′
𝑖 (𝒖), 𝐵𝑖(𝒖), 𝐴𝑖(𝒖)

compute I (𝑖)𝒖 = I (𝑖−1)𝒖 + 𝐴𝑖(𝒖) 𝒒𝑖
end for
Output: vector-valued interpolation function I (𝑚)𝒖
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to implement, taking no more than 50 lines of code with a technical language like Matlab, Python/Numpy or Julia.

6 EXPERIMENTAL RESULTS

The scalar component-by-component EIM, multi-component EIM, least-square EM and VEIM respectively are tested and com-
pared on different problems. The first example is a simple case on smooth functions defined on the intervalΩ = (0, 1) with values
in ℝ3. The second one deals the stationary 2D incompressible Navier-Stokes equations and a parametrized lid-driven cavity
with kinematic viscosity as parameter. The third one considers the lid driven cavity benchmark for nonstationary 2D Navier-
Stokes equations as investigated and tested in Silva et al14. Finally, a three-dimensional high-Reynolds number aerodynamic
flow problem around a shape-parametrized body is studied.

6.1 One-variable parametric functions with values in ℝ3

The VEIM is first tested on the discrete set of smooth parametric functions

𝒖𝜇(𝑥) =
⎛

⎜

⎜

⎝

cos(2𝜋𝑥𝜇) cos(𝜋𝑥𝜇)
cos(2𝜋𝑥𝜇) sin(𝜋𝑥𝜇)

sin(2𝜋𝑥𝜇)

⎞

⎟

⎟

⎠

(40)

for a scalar parameter 𝜇 ∈ ,  = [0.9 ∶ 0.01 ∶ 2.5] and one space variable 𝑥 ∈ (0, 1). The discrete set  contains 161
snapshots. All the spatial functions 𝑢𝜇 in  have been discretized using a uniform spatial mesh of cell size Δ𝑥 = 5 10−3. An
interesting feature of the functions of  is the property ‖𝒖𝜇(𝑥)‖ℝ𝑑 = 1 for all 𝜇 and all 𝑥 revealing how the components of
𝒖𝜇(𝑥) are correlated. This will be useful for the coming error plots. In Figure 1 the convergence curves of the different variant
algorithms in logarithmic scale are plotted, considering the worst relative 𝐿2 error over the whole set  . It is also compared to
the POD convergence as reference. The POD projection shows an exponential decay with about 15 orders of magnitude for a
truncation rank 𝑚 equal to 19. It is observed that both scalar component-by-component EIM, multi-component EIM and least-
square EM have the same convergence rate, similar to POD. All of three reach a relative error of 10−15 for 𝑚 = 20. The VEIM
algorithms shows a lower convergence rate with a relative error of 10−5 reached for 𝑚 = 34. For an expected relative error
criterion of 0.1%, the truncation rank is 𝑚 = 8, that is quite satisfactory.
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Figure 1 Convergence of the scalar component-by-component EIM, the multi-component EIM, the least-square EM and VEIM
algorithms with respect to the truncation rank 𝑚, compared to POD projection error (maximum 𝐿2 relative errors).

As mentioned above, all the functions 𝒖𝜇 os  hide a nonlinear invariant quantity: ‖𝒖𝜇(𝑥)‖ℝ𝑑 = 1 for all 𝑥 and all 𝜇. So it
is interesting to plot the error (𝝁, 𝑥) → |

|

|

1 − ‖𝒖𝜇(𝑥)‖ℝ𝑑
|

|

|

in the parameter-space domain. This is done in Figure 2 for VEIM in
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logarithmic contour scale using𝑚 = 10. The error is uniformly bounded with an upper bound of value 1.37 10−4. The 10 ’vertical
isolines’ appearing in the contour plot correspond to a zero interpolation error at these locations. This expresses the exactness
property at the 10 magic parameters of the selected snapshot functions. On the other hand, the 10 ’horizontal isolines’ correspond
to the location of the spatial magic points with a zero-error because of the interpolation property on all the components.

Figure 2 Contour plot of the function (𝜇, 𝑥) → log10
(

|

|

|

1 − ‖𝒖𝜇(𝑥)‖ℝ𝑑
|

|

|

)

in the (𝜇, 𝑥) plane, using VEIM and 𝑚 = 10. The
maximum 𝐿∞ error is 1.37 10−4. The vertical zero-error levelsets correspond to the location of the 10 magic parameters where
the exactness property is checked. The ’horizontal’ ones correspond to the location of the spatial magic points. The 10 magic
parameters ordered in increasing order are 0.90, 0.93, 1.01, 1.14, 1.30, 1.48, 1.70, 1.99, 2.27 and 2.50 .

For comparison purposes, in Figure 3 are plotted the iso-contours of the function (𝝁, 𝑥) → |

|

|

1 − ‖𝒖𝜇(𝑥)‖ℝ𝑑
|

|

|

in logarith-
mic scale for respectively the scalar component-by-component EIM, the multi-component EIM and the least-square empirical
method. It is observed that all the three method do not strictly preserve the nonlinear invariant ‖𝒖𝜇‖ℝ𝑑 with a maximum error
of order 10−6. At interpolation points, there is still also a residual error. Additionally, the scalar component-by-component EIM
does not fulfill the exactness property at magic parameters.

6.2 Navier-Stokes equations and parameterized stationary lid-driven cavity problem
In this section, we consider a stationary fluid motion problem where an incompressible fluid is moving into a two-dimensional
unit square domainΩ. The dimensionless stationary Navier-Stokes equations at constant fluid density are considered. The bound-
ary of the domain is divided into two parts, namely the upper border Γ1 = 𝜕Ω ∩ {𝑦 = 1} and Γ2 = 𝜕Ω∖Γ1. On Γ1, the fluid
moves with uniform velocity 𝒖Γ1

= (1, 0) while zero-velocity no-slip boundary conditions are imposed on Γ2. Let 𝜈 denote the
kinematic viscosity of the fluid, 𝒖 = 𝒖(𝒙, 𝑡) the velocity vector field and 𝑝 = 𝑝(𝒙, 𝑡) the scalar kinematic pressure field. The
partial differential problem to solve is

∇ ⋅ 𝒖 = 0 in Ω (41)
𝒖 ⋅ ∇𝒖 + ∇𝑝 − 𝜈Δ𝒖 = 0 in Ω, (42)
𝒖 = 𝒖Γ1

on Γ1, (43)
𝒖 = 𝟎 on Γ2. (44)

The parameter used in this example is the kinematic viscosity 𝜈, varying in the interval [6.5 10−4, 8 10−2] (laminar regime). The
sampling of the parameter interval uses a uniform discretization in logarithmic scale with 200 samples. The spatial mesh is a
Cartesian grid made of 100 × 100 points. A pseudo non-stationary method constant time step Δ𝑡 = 0.01 is used for the solution
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Figure 3 Contour plots of the function (𝜇, 𝑥) → log10
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|
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|

)

in the (𝜇, 𝑥) plane, using 𝑚 = 10 respectively for: a)
the scalar component-by-component EIM; b) the multi-component EIM; c) the least-square empirical method. It is observed that
all the three method do not strictly preserve the nonlinear invariant ‖𝒖𝜇‖ℝ𝑑 with a maximum error of order 10−6. At interpolation
points, there is still a residual error. Additionally, the component-by-component EIM does not fulfill the exactness property at
magic parameters.

of the stationary Navier-Stokes equations. At time 𝑇 = 20, the flow has almost reached stationary flow conditions. The velocity
field at that time is considered to be the steady state.

In Figure 4, a comparison of the convergence histories for the scalar component-by-component EIM, multicomponent EIM,
least-square empirical method and VEIM, respectively to the truncation rank 𝑚, is given. The maximum relative 𝐿2 errors over
the whole dataset are shown. One can observe that the component-by-component EIM, the multicomponent EIM and the least-
square EM have quite the same convergence rate, very close to that of POD approximation. The VEIM algorithm has a lower
convergence rate, roughly one half of the other methods, but remains quite satisfactory. VEIM reaches a maximum error less
than 0.1% for 𝑚 = 20. One can also observe that error decay of VEIM is of the same order than the other methods for the first
iterates (let say for 𝑚 up to 12).

6.3 Experimental study of VEIM on the non-stationary two-dimensional lid-driven cavity
problem
In this section we consider the reference two-dimensional lid-driven cavity benchmark20. This problem has also been considered
by Silva et al.14 for evaluation of their vector EIM roto-dilatation approach ("roto") and componentwise one ("orto"), with
comparison with standard POD projections. Both geometry and boundary conditions are the same than those of the previous test
case. In this case, we are more interested in the transient stage of the flow from its initial state at rest up to the steady state. The
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Figure 4 Stationary 2D lid-driven cavity problem. Comparison of the convergence histories for the scalar component-by-
component EIM, multicomponent EIM, least-square empirical method and VEIM respectively (maximum normalized 𝐿2

errors). The history of POD projection error is also given as a reference.

initial condition consists in a uniform zero velocity field throughout the domain (fluid at rest). The dimensionless time window
of study is [0, 𝑇 ] with 𝑇 = 20. Let 𝑅𝑒 denote the Reynolds number. The partial differential problem to solve is

∇ ⋅ 𝒖 = 0 in Ω×]0, 𝑇 ], (45)
𝜕𝑡𝒖 + 𝒖 ⋅ ∇𝒖 + ∇𝑝 − 1

𝑅𝑒
Δ𝒖 = 0 in Ω×]0, 𝑇 ], (46)

𝒖 = 𝒖Γ1
on Γ1×]0, 𝑇 ], (47)

𝒖 = 𝟎 on Γ2×]0, 𝑇 ], (48)
𝒖(., 0) = 𝟎 in Ω. (49)

For reproducible research purpose, we have decided to use the free public-domain Matlab code written by Michio22. A web page
mentioned in the citation gives all the details on both spatial discretization, solvers and time integration. For our experiments, a
Cartesian mesh made of 100 × 100 points is used for spatial discretization. A constant time step Δ𝑡 = 0.01 is used.

Following the experimental setup proposed in Silva et al.14, two parameters are considered, namely the dimensionless time
𝑡 ∈ [0, 20] and the Reynolds number 𝑅𝑒 varying in the range [307.6923, 1538.5]. The Reynolds numbers covers a large part of
the laminar regime, far enough from the transition/turbulence and not too close to the Stokes conditions, with a non negligible
inertial effect. The final time 𝑇 has been chosen so that the solutions are not far from the stationary flow for all the 𝑅𝑒 values
considered. In what follows, for simplicity we will use the notation 𝜈 = 𝑅𝑒−1 (equivalent kinematic viscosity).

First, a set  of parametric vector fields is computed by considering the discrete finite parameter set:
 =

{

(𝑡𝑛, 𝜈𝑗), 𝑡𝑛 = 𝑛 𝛿𝑡, 𝜈𝑗 = 𝜈0 + 𝑗 Δ𝜈, 𝑛 ∈ {1, ..., 62}, 𝑗 ∈ {0, ..., 13}
} (50)

with 𝜈0 = 6.15 10−4, Δ𝜈 = 2 10−4 and 𝛿𝑡 = 0.32. The set  has 14 × 62 = 868 samples. So the numerical database of velocity
fields requires 2 × 1002 × 868 × 8 ≈ 135 MB of computer memory considering double precision float numbers.

In Figure 5, the 28 first velocity snapshots drawn with arrows represent the starting expansion of a vortex generated at the top
right corner on the domain by the moving lid for 𝜈 = 𝜈0. From a reducibility point of view, without any particular advection
treatment at the ROM level, transient inertial effects are known to be an unfavorable context for dimensionality reduction. This
is analyzed in the next subsection.

6.3.1 Reducibility
As a preliminary study, we first evaluate the dimensionality reduction potential of the problem. For that a linear principal
component analysis is done on the set of  of FE vector fields. If 𝐾 is the truncation rank in the PCA analysis, if Π𝐾 represents
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Figure 5 The 28 first velocity snapshots of the set  , ordered from left to right, top to bottom, plotted with arrows (corresponding
to 𝜈 = 6.5 10−4).

the orthogonal projector over the vector space 𝑊 𝐾 spanned by the 𝐾 first POD modes, then a classical PCA approximation
error estimate15 on a finite set of 𝑁 samples is

𝑁
∑

𝑖=1
‖𝒖𝜇𝑖

− Π𝐾𝒖𝜇𝑖
‖

2
𝐿2 ≤ 𝜑(𝐾)

𝑁
∑

𝑖=1
‖𝒖𝜇𝑖

‖

2
𝐿2 . (51)

where
𝜑(𝐾) =

( 𝑁
∑

𝑖=𝐾+1
𝜎2
𝑖

)

∕

( 𝑁
∑

𝑖=1
𝜎2
𝑖

)

(52)
with {𝜎𝑖} the set of nonnegative singular values in increasing order. Then quantity 𝜑(𝐾) can be used for the selection of the
smallest truncation rank 𝐾 such that 𝜑(𝐾) < 𝜀2𝑡𝑜𝑙 according to a certain accuracy threshold 𝜀𝑡𝑜𝑙. In Figure 6a), the function
𝐾 →

√

𝜑(𝐾) for 𝐾 ∈ {1, ..., 100} is plotted. One can observe a rather low convergence, with about 50 POD modes to decrease
the mean 𝐿2 error by three orders of magnitude. As mentioned in Silva et al.? , this reflects the reduction complexity of the
problem, due to a strong transient stage with dominating convection and inertial effect, but also to the presence of strong gradients
at different locations. In Figure 6b), the worst case of 𝐿2 POD projection error is considered. In log scale, the following relative
maximum 𝐿2 error

𝐾 → max
𝝁∈

‖𝒖𝜇 − Π𝐾𝒖𝜇‖𝐿2

‖𝒖𝜇‖𝐿2
. (53)

is plotted. One can observe an even lower convergence where at least 45 POD modes are needed to en error below the percentage
point, considered as an acceptable threshold accuracy for this example.

For additional information and next comparison with the VEIM basis functions, in Figure 7 the first 9 velocity POD modes
are plotted. One can observe that the first POD mode reproduces the main structure of the near steady state flow, while the others
are more and more oscillatory and provide additional spatial details. These modes are not localized and add higher-frequency
details on the whole domain.

6.3.2 Experimental analysis of VEIM
The VEIM algorithm is now applied to the discrete set  of velocity field snapshots. First, it is worth mentioning that we did
not met any issue (degeneracy, breakdown, divergence) with VEIM on the lid-driven cavity dataset. In Figure 8a), convergence
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Figure 6 a) Plot of the error criterion 𝐾 →
√

𝜑(𝐾) giving an upper bound of the mean relative 𝐿2 over the whole set  . b) Plot
of the maximum relative 𝐿2 error over the whole set  with respect to the number POD basis functions. It is observed that at
least 45 basis functions are required for a decay of two orders of magnitude of the maximum error.
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Figure 7 From left to right, top to bottom: the first 9 velocity POD modes, plotted with arrows. These modes are divergence-free.

history curves of maximum 𝐿2 error for POD and VEIM are compared. For truncation ranks between 1 and 40, the decay rates
appear to be identical. For greater truncation ranks, VEIM is observed to have a slightly lower convergence rate than POD. About
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60 VEIM basis functions are needed to reach a maximum relative error of 1 percent. For the sake of completeness, since 𝐿∞ is
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Figure 8 a) Comparison of the maximum relative 𝐿2 error between POD and VEIM. About 60 basis functions are needed for a
loss of 2 orders of magnitudes using VEIM. b) Convergence curve of the maximum 𝐿∞ error for the VEIM algorithm.

the proper norm in EIM, the history curve of maximum 𝐿∞ error for VEIM is given in Figure 8b). It is observed that about 80
modes are needed to reach a decay of 2 orders of magnitudes (1 percent relative error). This can be explained by the fact that
the 𝐿∞ norm is quite constraining especially with velocity fields showing strong gradients and boundary layers. In Figure 9, we
give a detailed view of the 𝐿∞ error for all the 868 samples in the dataset. A truncation rank 𝑚 = 100 is here used. One can
appreciate the uniform distribution of the error with a maximum 𝐿∞ error less than 6 10−3. Let us also emphasize the cases of
zero-error interpolations for some samples. Again this is due to the exactness property of VEIM at the selected snapshots.
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Figure 9 𝐿∞ error on the velocity field over the whole sample set (868 samples) using 𝑚 = 100. One can check the exactness
property of interpolation (null error) for the 100 samples selected during the VEIM iterative process.

In Figure 10, the 12 first velocity basis functions computed with VEIM are drawn with arrows. They can be compared to
those of POD projection from Figure 7. One can observe that some of them are similar to POD modes while some others are
more localized functions providing spatial details to the corrections (local swirls, especially near the top right corner).

In the two last figures, we focus on the locations of the magic parameters and the spatial magic points found by VEIM. In
Figure 11 are plotted the 20 first selected VEIM magic parameters {𝜇𝑖} in the (𝑡, 𝜈) parameter domain. The magic parameters
are numbered according to their order of selection in VEIM. We find results very similar to Silva et al.14. The domain of interest
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Figure 10 From left to right, top to bottom: the first 12 velocity vector basis functions computed with VEIM and plotted with
arrows.

roughly forms a 𝐿-shaped zone. Several snapshots are selected for the smallest kinetic viscosity in the discrete parameter set.
The first selected parameter corresponds to the (near) steady flow with maximum viscosity while the second one corresponds
to the dawning vortex at top right corner for the smallest viscosity.

Finally, in Figure 12, the corresponding 20 spatial magic points are plotted. The first one is naturally located at the top lid
boundary where the velocity norm is maximum. For the others it is observed that they are mostly located in the right area of
the domain. Actually VEIM automatically detects the regions on strong variations of the solutions, related to the motion of the
growing vortex during the transient stage of the incompressible flow.
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Figure 11 The 20 first selected magic parameter vectors {𝝁𝑖} computed with VEIM in the (𝑡, 𝜈) parameter domain. The labels
return the VEIM iteration number.
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Figure 12 The 20 first selected magic points vectors {𝒙𝑖} computed with VEIM in the (𝑥, 𝑦) spatial domain. The labels return
the VEIM iteration number.

6.4 Three-dimensional aerodynamic flow around shape parameterized Ahmed body
We now consider the flow field around a three-dimensional shape-parameterized Ahmed body. In vehicle industry this bluff
body is particularly used to understand mechanism of drag generation. Investigating the flow in the wake gives a rich set of
informations about the fluid dynamics, which is essential to improve vehicle aerodynamic performances, such as the drag. Two
main families of methods exist to assess the drag, namely the near-field and the far-field approaches. For the near-field approach,
local normal stresses are integrated on the body. In the far-field approach, the aerodynamic forces are derived from the momentum
integral balance on outer surfaces of a box enclosing the body. For a bounding box being sufficiently far from the vehicle, only
the wake plane can be used for drag estimation. Therefore, in this test case we are interested in the reconstruction of physical
quantities in body’s wake.
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Air flow simulation is carried out using a commercial solver ProLB, based on the Lattice Boltzmann Method. To deal with
turbulent flows, Large Eddy Simulation (LES) turbulence model combined with Shear Improved Smagorinsky Subgrid-Scale
(SGS) model is used by the solver. The computational domain is designed to accurately represent a wind tunnel physical setup.
This domain is 48.96 m long, 29.4 m high and 46.4 m wide. At the inlet of the flow domain a velocity of 45.88 m.s−1 is set,
corresponding to a Reynolds number of order 107. The atmospheric pressure (101325 Pa) is set at the outlet of the domain. On
all other bounding surfaces of the domain, a friction-less boundary condition is employed. Finally, on Ahmed body surfaces, a
no-slip boundary condition is used.

The computational domain is composed of eight AMR Resolution Domains (RD2 to RD9), corresponding to the refinements
of the lattice Boltzmann mesh. The first resolution domain (RD2) is defined by the coarser mesh size of 16 mm, while the mesh
of the last resolution domain (RD9) has a size of 1.25 mm. The solver performs unsteady flow simulations, however physical
quantities are then averaged over a suitable time interval to filter the nonstationary flow features due to the LES turbulence
model. We consider only averaged results within RD5. The bluff body, is made of three parts: a fore body, a mid-section and
a rear end. The main dimension of the reference body are given in Figure 13. Four shape parameters 𝜇𝑖=1,. . . ,4 are defined to
create multiple 3D geometries. In Figure 14 the definition of these parameters is given:

• 𝜇1 ∈ [−20, 20]: elevation of the fore body ,
• 𝜇2 ∈ [−20, 20]: global height of the body,
• 𝜇3 ∈ [0, 30]: slant angle 𝜙 of the rear end,
• 𝜇4 ∈ [0, 50]: angle 𝜃 of the rear end.

A total of thirty geometries are generated considering the shape parameter set  =
{

𝝁𝑗 , 𝑗 ∈ {1, . . . , 30}
}. In Figure 15 , stream

Figure 13 Geometry and main dimension of Ahmed body

lines of velocity magnitude are plotted in the symmetry plane for 𝝁122. Flow structure near the vehicle shows rotating vortices
which are dissipated at greater distances from the rear end body.

In the flow downstream to the body, a 2D Cartesian grid is defined, where 𝑦 ∈ [−0.8, 0.8[, 𝑧 ∈ [0, 97[ with a spatial
discretization Δ𝑦 = Δ𝑧 = 0.1 m, resulting in a 161×98 mesh grid. The 𝑥 position of the grid is set regarding the distance to rear
end of the body. As mentioned earlier, far-field drag can be computed with wake planes far from the body, then planes varying
in the range [0.90, 1.0[ (in meter) are defined every 0.1 m. The minimum and maximum plane location is drawn in Figure 15.

Figure 16, shows the comparison of velocity magnitude in the transversal plane, for different locations 𝑥 downstream the
body. It can be observed that as planes are located far from the turbulent wake, the velocity magnitude contour is quite similar
from plane to plane. However, one can see that the wake is highly influenced by the shape of the 3D body. A set of parametric
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Figure 14 Shape parameters defined on the reference Ahmed body geometry

Figure 15 Velocity magnitude streamlines in symmetry plane for shape 𝝁122, and wake plane location.

3D velocity field is computed by considering the finite parameter set:
 =

{

(𝝁𝒋 , 𝑥
𝑘), 𝑗 ∈ {1, . . .30}, 𝑘 ∈ {1, . . . , 10}

} (54)
The dataset is composed of 300 samples of three-dimensional velocity fields, on 15778 mesh nodes. For this dataset, a compar-
ison of the different empirical interpolation approaches is given in Figure 17. We also include POD truncation as convergence
reference. The maximum relative 𝐿2 errors over the whole dataset are shown. One can observe that all vector-valued Empirical
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Figure 16 From top to bottom: examples of two sample shapes with associated magnitude velocity contours for plane sections
𝑥 = 0.9 m to 0.99 m.

Interpolation Methods have a convergence rate not far the POD one. Again the component-by-component EIM, the multi-
component EIM and the least-square EM have quite the same convergence rates while VEIM shows a lightly lower convergence.
For all the methods, an 1% maximum relative 𝐿2 is reached for 𝑚 = 55. We get a reasonable dimensionality reduction that can
be leveraged for achieving efficient data-driven drag-force shape-parameterized surrogate models. This is at the aim of current
research and developments in Renault Group.

7 CONCLUDING REMARKS AND PERSPECTIVES

In this paper, the original empirical interpolation method EIM has been extended to the case of vector-valued functions of
arbitrary dimension. A naive component-by-component scalar EIM strategy can be used, but it cannot return suitable vector-
valued basis functions. The multicomponent EIM initially proposed by Tonn12 shows good theoretical properties with exact
reconstruction of the selected snapshots as well as preservation of linear invariant quantities. The so-called least square empirical
method (LSEM) variant approach proposed in this paper returns identical properties. Besides these methods, the proposed
VEIM approach enables interpolation on all the vector components at the magic points. As already remarked in a recent work14,
due to the number of conditions one needs more degrees of freedom as in the scalar case. This leads us to consider linear
combination coefficient matrices. They are searched in order to fulfill the expected interpolation conditions and to ensure the
exact reconstruction of the selected snapshots. It has been theoretically shown that such matrices always exist, and an effective
construction is proposed. Both offline and online stages of VEIM are very easy to implement, with computational and storage
complexities that are linear with the output dimension. Note that VEIM is strictly identical to EIM for scalar functions. Let us
make a comment on the computed matrix coefficients 𝐴𝑚(𝒖) (at iterate 𝑚). Thanks to (35)-(37), one can see that 𝐴𝑚(𝒖) is ’not
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Figure 17 Parametrized Ahmed body problem. Comparison of the convergence histories for POD the scalar component-
by-component EIM, multicomponent EIM, least-square empirical method and VEIM respectively (maximum normalized 𝐿2

errors). The history of POD projection error is also given as a reference

too far’ from the identity matrix multiplied by a scaling factor:

𝐴𝑚(𝒖) ≈
‖𝒆(𝑚−1)𝑢 (𝒙𝑚)‖ℝ𝑑

‖𝒆(𝑚−1)𝑢𝑚 (𝒙𝑚)‖ℝ𝑑

𝐼𝑑 .

But, because of the interpolation condition (31) (required at the new magic point 𝒙𝑚), a certain ’warping’ needs to be applied in
the �̂�𝑚 direction. The other orthogonal directions are only scaled by 𝐴𝑚(𝒖). It would had been optimal to exactly preserve linear
invariant quantites of the functions, like e.g. ∇ ⋅ 𝒖 = 0 for velocity fields of incompressible fluids. Unfortunately, because of
the matrix coefficients in VEIM, this is only achieved up to an order of accuracy. It appears hard – unless impossible – to fulfill
interpolation, exactness and preservation of some linear invariant quantities in a row. From the experimental point of view, the
VEIM shows a lower convergence rate, probably because of this defect.

Since EIM determines some locations of interest for each component of the field, one could imagine its utilization in the
context of data assimilation with possibly vector measurements (e.g. velocity intensity and directions, direction of magnetic
field, multiple output criteria, etc.). Depending on the physical problem, the observable quantities or the use case, one could
choose the most convenient method among the different vector-valued EIM candidates.

Ongoing work is to consider and use vector-valued EIM as data-driven Machine Learning ingredients for deriving easy-to-
compute surrogate models for design exploration and optimization. The empirical interpolation method can be used as a tool for
deriving tensor decompositions of vector-valued parameterized functions. From VEIM, each function 𝒖𝜇 in  can be represented
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by its interpolated representation:
I (𝑚)𝒖(𝒙;𝝁) =

𝑚
∑

𝑖=1
𝐴𝑖(𝝁) 𝒒𝑖(𝒙) (55)

In this context, it is relevant to say that the matrix 𝐴𝑖(𝝁) depends on 𝝁 rather than 𝒖𝜇. Actually, the interpolation needs the set
of vector values {𝒖𝜇(𝑥𝑖)}𝑖=1,...,𝑚 that indeed depends on 𝝁. The mapping

𝐴𝑖 ∶ → M𝑑(ℝ)
𝝁 → 𝐴𝑖(𝝁)

has to be determined. This can be achieved by usual Machine Learning algorithms such as Artificial Neural Networks. The
tensor representation (55) can be itself seen as a neural network ’supervized’ by the preliminary computations of the truncation
rank 𝑚 and the basis functions 𝒒𝑖. This is currently tested on various applications like car crash dynamics13, complex 3D fluid
Mechanics problems including external air flows around cars17 and fluid-structure interactions problems of deformable capsules
flowing into micro-channels18,19.
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