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Abstract. In the paper, we define a new parameter for tournaments
called degreewidth which can be seen as a measure of how far is the
tournament from being acyclic. The degreewidth of a tournament T de-
noted by ∆(T ) is the minimum value k for which we can find an ordering
⟨v1, . . . , vn⟩ of the vertices of T such that every vertex is incident to at
most k backward arcs (i.e. an arc (vi, vj) such that j < i). Thus, a tour-
nament is acyclic if and only if its degreewidth is zero. Additionally, the
class of sparse tournaments defined by Bessy et al. [ESA 2017] is exactly
the class of tournaments with degreewidth one.
We study computational complexity of finding degreewidth. We show it is
NP-hard and complement this result with a 3-approximation algorithm.
We provide a O(n3)-time algorithm to decide if a tournament is sparse,
where n is its number of vertices.
Finally, we study classical graph problems Dominating Set and Feed-
back Vertex Set parameterized by degreewidth. We show the for-
mer is fixed-parameter tractable whereas the latter is NP-hard even on
sparse tournaments. Additionally, we show polynomial time algorithm
for Feedback Arc Set on sparse tournaments.

Keywords: Tournaments · NP-hardness · graph-parameter · feedback
arc set · approximation algorithm · parameterized algorithms

1 Introduction

A tournament is a directed graph such that there is exactly one arc between
each pair of vertices. Tournaments form a very rich subclass of digraphs which
has been widely studied both from structural and algorithmic point of view [4].
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Unlike for complete graphs, a number of classical problems remain difficult in
tournaments and therefore interesting to study. These problems include Dom-
inating Set [14], Winner Determination [23], or maximum cycle packing
problems. For example, Dominating Set is W[2]-hard on tournaments with
respect to solution size [14]. However, many of these problems become easy on
acyclic tournaments (i.e. without directed cycle). Therefore, a natural question
that arises is whether these problems are easy to solve on tournaments that are
close to being acyclic. The phenomenon of a tournament being “close to acyclic”
can be captured by minimum size of a feedback arc set (fas). A fas is a collection
of arcs that, when removed from the digraph (or, equivalently, reversed) makes
it acyclic. This parameter has been widely studied, for numerous applications in
many fields, such as circuit design [20], or artificial intelligence [5,13]. However,
the problem of finding a minimum fas on tournaments (the problem is then called
FAST for Feedback Arc Set in Tournaments), remained opened for over a
decade before being proven NP-complete [3,10]. From the approximability point
of view, van Zuylen and Williamson [26] provided a 2-approximation of FAST,
and Kenyon-Mathieu and Schudy [22] a PTAS algorithm. On the parameterized-
complexity side, Feige [15] as well as Karpinski and Schudy [21] independently

proved an 2O(
√
k) + nO(1) running-time algorithm. Another way to define FAST

is to consider the problem of finding an ordering of the vertices ⟨v1, . . . , vn⟩ min-
imising the number of arcs (vi, vj) with j < i; such arcs are called backward
arcs. Then, it is easy to see that a tournament is acyclic if and only if it admits
an ordering with no backward arcs. Several parameters exploiting an ordering
with specific properties have been studied in this sense [19] such as the cutwidth.
Given an ordering of vertices, for each prefix of the ordering we associate a cut
defined as the set of backward arcs with head in the prefix and tail outside of it.
Then cutwidth is the minimum value, among all the orderings, of the maximum
size of any possible cut w.r.t the ordering (a formal definition is introduced in
next section). It is well-known that computing cutwidth is NP-complete [18], and
has an O(log2(n))-approximation on general graphs [24]. Specifically on tourna-
ments, one can compute an optimal ordering for the cutwidth by sorting the
degrees according to the in-degrees [17].

In this paper, we propose a new parameter called degreewidth using the con-
cept of backward arcs in an ordering of vertices. Degreewidth of a tournament
is the minimum value, among all the orderings, of the maximum number of
backward arcs incident to a vertex. Hence, an acyclic tournament is a tour-
nament with degreewidth zero. Furthermore, one can notice that tournaments
with degreewidth at most one are the same as the sparse tournaments intro-
duced in [8, 25]. A tournament is sparse if there exists an ordering of vertices
such that the backward arcs form a matching. It is known that computing a
maximum sized arc-disjoint packing of triangles and computing a maximum
sized arc-disjoint packing of cycles can be done in polynomial time [7] on sparse
tournaments.

To the best of our knowledge this paper is the first to study the parameter
degreewidth. As we will see in the next part, although having similarities with the
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cutwidth, this new parameter differs in certain aspects. We first study structural
and computational aspects of degreewidth. Then, we show how it can be used
to solve efficiently some classical problems on tournaments.
Our contributions and organization of the paper Next section provides the
formal definition of degreewidth and some preliminary observations. In Section 3,
we first study the degreewidth of a special class of tournaments, called regular
tournaments, of order 2k+1 and prove they have degreewidth k. We then prove
that it is NP-hard to compute the degreewidth in general tournaments. We
finally give a 3-approximation algorithm to compute this parameter which is
tight in the sense that it cannot produce better than 3-approximation for a class
of tournaments.

Then in Section 4, we focus on tournaments with degreewidth one, i.e., the
sparse tournaments. Note that it is claimed in [8] that there exists a polynomial-
time algorithm for finding such ordering, but the only available algorithm ap-
pearing in [25, Lemma 35.1, p.97] seems to be incomplete (see discussion Sub-
section 4.2). We first define a special class of tournaments that we call U -
tournaments. We prove there are only two possible sparse orderings for such
tournaments. Then, we give a polynomial time algorithm to decide if a tourna-
ment is sparse by carefully decomposing it into U -tournaments.

Finally, in Section 5 we study degreewidth as a parameter for some classical
graph problems. First, we show an FPT algorithm for Dominating Set w.r.t
degreewidth. Then, we focus on tournaments with degreewidth one. We design
an algorithm running in time O(n3) to compute a Feedback Arc Set on tour-
naments on n vertices with degreewidth one. However, we show that Feedback
Vertex Set remains NP-complete on this class of tournaments.
Due to paucity of space the missing proofs are deferred to full version [12].

2 Preliminaries

2.1 Notations

In the following, all the digraphs are simple, that is without self-loop and multiple
arcs sharing the same head and tail, and all cycles are directed cycles. The
underlying graph of a digraph D is an undirected graph obtained by replacing
every arc ofD by an edge. Furthermore, we use [n] to denote the set {1, 2, . . . , n}.

A tournament is a digraph where there is exactly one arc between each pair
of vertices. It can alternatively be seen as an orientation of the complete graph.
Let T be a tournament with vertex set {v1, . . . , vn}. We denote N+(v) the out-
neighbourhood of a vertex v, that is the set {u | (v, u) ∈ A(T )}. Then, T being
a tournament, the in-neighbourhood of the vertex v denoted N−(v) corresponds
to V (T ) \ (N+(v) ∪ {v}). The out-degree (resp. in-degree) of v denoted d+(v)
(resp. d−(v)) is the size of its out-neighbourhood (resp. in-neighbourhood).

A tournament T of order 2k + 1 is regular if for any vertex v, we have
d+(v) = d−(v) = k. Let X be a subset of V (T ). We denote by T − X the
subtournament induced by the vertices V (T )\X. Furthermore, when X contains
only one vertex {v} we simply write T − v instead of T − {v}. We also denote
by T [X] the tournament induced by the vertices of X. Finally, we say that T [X]
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dominates T if, for every x ∈ X and every y ∈ V (T ) \X, we have (x, y) ∈ A(T ).
For more definitions on directed graphs, please refer to [4].

Given a tournament T , we equip the vertices of T with is a strict total order
≺σ. This operation also defines an ordering of the set of vertices denoted by
σ := ⟨v1, . . . , vn⟩ such that vi ≺σ vj if and only if i < j. Given two distinct
vertices u and v, if u ≺σ v we say that u is before v in σ; otherwise, u is after v
in σ. Additionally, an arc (u, v) is said to be forward (resp. backward) if u ≺σ v
(resp. v ≺σ u). A topological ordering is an ordering without any backward
arcs. A tournament that admits a topological ordering does not contain a cycle.
Hence, it is said to be acyclic.

A pattern p1 := ⟨v1, . . . , vk⟩ is a sequence of vertices that are consecutive
in an ordering. Furthermore, considering a second pattern p2 := ⟨u1, . . . , uk′⟩
where {v1, . . . , vk} and {u1, . . . , uk′} are disjoint, the pattern ⟨p1, p2⟩ is defined
by ⟨v1, . . . , vk, u1, . . . , uk′⟩.
Degreewidth Given a tournament T , an ordering σ of its vertices V (T ) and a
vertex v ∈ V (T ), we denote dσ(v) to be the number of backward arcs incident
to v in σ, that is dσ(v) := |{u | u ≺σ v, u ∈ N+(v)} ∪ {u | v ≺σ u, u ∈ N−(v)}|.
Then, we define the degreewidth of a tournament with respect to the ordering
σ, denoted by ∆σ(T ) := max{dσ(v) | v ∈ V (T )}. Note that ∆σ(T ) is also the
maximum degree of the underlying graph induced by the backward arcs of σ.
Finally, we define the degreewidth ∆(T ) of the tournament T as follows.

Definition 1. The degreewidth of a tournament T , denoted ∆(T ), is defined as
∆(T ) := minσ∈Σ(T ) ∆σ(T ), where Σ(T ) is the set of possible orderings for V (T ).

As mentioned before, this new parameter tries to measure how far a tour-
nament is from being acyclic. Indeed, it is easy to see that a tournament T is
acyclic if and only if ∆(T ) = 0. Additionally, when degreewidth of a tournament
is one, it coincides with the notion of sparse tournaments, introduced in [8].
Remark. The definition of degreewidth naturally extends to directed graphs
and we hope it will be an exciting parameter for problems on directed graphs.
However, in this article we study this as a parameter for tournaments which
is well-studied in various domains [2, 9, 23]. Moreover, degreewidth also gives a
succinct representation of a tournament. Informally, sparse graphs5 are graphs
with a low density of edges. Hence, it may be surprising to talk about sparsity
in tournaments. However, if a tournament on n vertices admits an ordering σ
where the backward arcs form a matching, then it can be encoded by σ and
the set of backward arcs (at most n/2). Thus, the size of the encoding for such
tournament is O(n), instead of O(n2). For a tournament with degreewidth k,
the same reasoning implies that it can be encoded in O(kn) space.

2.2 Links to other parameters

Feedback arc/vertex set A feedback arc set (fas) is a collection of arcs that,
when removed from the digraph (or, equivalently, reversed) makes it acyclic. The

5 Not to be confused with sparse tournaments that has an arc between every pair of
vertices, hence, is not a sparse graph.
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size of a minimum fas is considered for measuring how far the digraph is from
being acyclic. In this context, degreewidth comes as a promising alternative.
Finding a small subset of arcs hitting all substructures (in this case, directed
cycles) of a digraph is one of the fundamental problems in graph theory. Note
that we can easily bound the degreewidth of a tournament by its minimum fas f .

Observation 1. For any tournament T , we have ∆(T ) ≤ |f |.

Proof. Consider a tournament T , and let σf be an ordering of T for which the
backward arcs are exactly the k arcs of a minimum feedback arc set of T . Then,
for any vertex v ∈ V (T ), we have dσf

(v) ≤ k. Therefore, ∆(T ) ≤ ∆σf
(T ) ≤ k.

Note however that the opposite is not true; it is possible to construct tour-
naments with small degreewidth but large fas, see Figure 1(a).

v1 v2 v3 v4 v5 v6 v7 v8 v9

(a) Example of a tournament with de-

greewidth one but fas (resp. fvs) |V (T )|
3

.

v1 v4 v5 v7 v2 v3 v6

(b) Example of a tournament T with

fvs one (v7) but degreewidth |V (T )|−3
2

.
The topological ordering of T − v7 is
⟨v1, v2, v3, v4, v5, v6⟩.

1

v1

2

v2

3

v3

3

v4

4

v5

5

v6

6

v7

(c) Example of a tournament with de-

greewidth one but cutwidth |V (T )|−1
2

.
Since the vertices are sorted by increasing
in-degrees (values inside the vertices), this
is an optimal ordering for the cutwidth.

Fig. 1 Link between degreewidth and other parameters. All the non-depicted
arcs are forward.

Similarly, a feedback vertex set (fvs) consists of a collection of vertices that,
when removed from the digraph makes it acyclic. However, – unlike the feedback
arc set – the link between feedback vertex set and degreewidth seems less clear;
we can easily construct tournaments with low degreewidth and large fvs (see
Figure 1(a)) as well as large degreewidth and small fvs (see Figure 1(b)).

Cutwidth Let us first recall the definition of the cutwidth of a digraph. Given an
ordering σ := ⟨v1, . . . , vn⟩ of the vertices of a digraph D, we say that a prefix of
σ is a sequence of consecutive vertices ⟨v1, . . . , vk⟩ for some k ∈ [n]. We associate
for each prefix of σ a cut defined as the set of backward arcs with head in the
prefix and tail outside of it. The width of the ordering σ is defined as the size of a
maximum cut among all the possible prefixes of σ. The cutwidth of D, ctw(D),
is the minimum width among all orderings of the vertex set of D.

Intuitively, the difference between the cutwidth and the degreewidth is that
the former focuses on the backward arcs going “above” the intervals between
the vertices while the latter focuses on the backward arcs coming from and to
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the vertices themselves. Observe that for any tournament T , the degreewidth is
bounded by a function of the cutwidth. Formally, we have the following

Observation 2. For any tournament T , we have ∆(T ) ≤ 2ctw(T ).

Proof. Consider a tournament T , and let σc be an optimal ordering of T for
the cutwidth. Then, let v be a vertex such that dσc

(v) = ∆σc
(T ), the number

of backward arcs with v as a tail (resp. with v as a head) cannot be larger
than ctw(T ) without contradicting the optimality of σc. Therefore, we have
∆σ(T ) ≤ ∆σc(T ) = dσc(v) ≤ 2ctw(T ).

Note however that the opposite is not true; it is possible to construct tour-
naments with small degreewidth but large cutwidth, see Figure 1(c). We remark
that the graph problems that we study parameterized by degreewidth, namely,
minimising fas, fvs, and dominating set are FPT w.r.t cutwidth [1, 11].

3 Degreewidth

In this section, we present some structural and algorithmical results for the com-
putation of degreewidth. We first introduce the following lemma that provides
a lower bound on the degreewith.

Lemma 1. Let T be a tournament. Then ∆(T ) ≥ minv∈V (T ) d
−(v) and ∆(T ) ≥

minv∈V (T ) d
+(v).

Proof. Consider an optimal ordering σ of T . Denote by u the first (resp. last)
vertex according to this order. Clearly, u has d−(u) (resp. d+(u)) incident back-
wards arcs. Therefore, we have ∆(T ) ≥ d−(u) ≥ minv∈T (V ) d

−(v) (resp. ∆(T ) ≥
d+(u) ≥ minv∈T (V ) d

+(v)).

3.1 Degreewidth of regular tournaments

Theorem 1. Let T be a regular tournament of order 2k + 1. Then ∆(T ) = k.
Furthermore, for any ordering σ, by denoting u and v respectively the first and
last vertices in σ, we have dσ(u) = dσ(v) = k.

Proof. Due to Lemma 1,∆(T ) ≥ k. Suppose by contradiction that∆(T ) > k. Let
σ be an ordering of T such that∆σ(T ) = ∆(T ) which minimises the total number
of backward arcs. Let the leftmost vertex of σ with dσ(v) > k be denoted by v.
We construct an ordering σ′ from σ by placing v at the first position (and not
moving the other vertices). First we show that∆σ′(T ) ≤ ∆σ(T ). Since v is first in
σ′ and T is regular, we have that dσ′(v) = k. Observe that since T is regular and
dσ(v) > k, v is not the first vertex in σ. Suppose that the vertex w precedes v in
σ. Then, since v is the leftmost vertex such that dσ(v) > k, we have dσ(w) ≤ k.
If (v, w) ∈ A(T ), then dσ′(w) = dσ(w) − 1 < k. Otherwise, (w, v) ∈ A(T ), then
dσ′(w) = dσ(w) + 1 ≤ k + 1 ≤ dσ(v). Since the ordering between other vertices
is the same in both σ and σ′, we have that ∆σ′(T ) ≤ ∆σ(T ).
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Now we show that the number of backward arcs in σ′ is less than the number
of backward arcs in σ which contradicts the minimality of σ. Let L+ = N+(v)∩
{u | u ≺σ v} be the set of out-neighbours of v on the left of v, L− = N−(v)∩{u |
u ≺σ v} the set of in-neighbours of v on the left of v, R+ = N+(v) \ L+ be the
set of out-neighbours of v on the right of v and R− = N−(v) \ L− be the set
of in-neighbours of v on the right of v in σ. Then dσ(v) = |L+| + |R−|. The
backward arcs from v to L+ are forward arcs in σ′ and the arcs from L− to v are
now backward arcs incident to v in σ′. All the other arcs remain unchanged. As
T is regular, we have |L−|+ |R−| = k and then dσ(v) = |L+|+ (k − |L−|) > k.
Thus, |L+| > |L−|. Therefore, the total number of backward arcs of σ′ is strictly
smaller than σ.

This contradicts the minimality of σ. Hence, we conclude that ∆(T ) = k.
The second part of the statement is immediate by regularity of the tournament.

Note that regular tournaments contain many cycles; therefore it is not sur-
prising that their degreewidth is large. This corroborates the idea that this pa-
rameter measures how far a tournament is from being acyclic.

3.2 Computational complexity

We now show that computing the degreewidth of a tournament is NP-hard by
defining a reduction from Balanced 3-SAT(4), proven NP-complete [6] where
each clause contains exactly three unique literals and each variable occurs two
times positively and two times negatively.

Let φ be a Balanced 3-SAT(4) formula with m clauses c1, . . . , cm and n
variables x1, . . . , xn. In the construction, we introduce several regular tourna-
ments of size W or W+1

2 + n+m, where W is value greater than n3 +m3. Note
that n+m is necessarily odd since 4n = 3m. By taking a value W = 3 mod 4,
we ensure that every regular tournament of size W or W+1

2 + n+m has an odd
number of vertices.

Construction 1. Let φ be a Balanced 3-SAT(4) formula with m clauses
c1, . . . , cm clauses and n variables x1, . . . , xn such that n is odd and m is even. Let
W = 3 mod 4 be an integer greater than n3 +m3. We construct a tournament
T as follows.
– Create two regular tournaments A and D of order W+1

2 +m + n such that
D dominates A.

– Create two regular tournaments B and C of order W such that A dominates
B ∪ C, B dominates C and B ∪ C dominates D.

– Create an acyclic tournament X of order 2n with topological ordering
⟨v1, v′1, . . . , vn, v′n⟩ such that A ∪ C dominates X and X dominates B ∪D.

– Create an acyclic tournament Y of order 2m with topological ordering
⟨q1, q′1, . . . , qm, q′m⟩ such that B ∪D dominates Y and Y dominates A ∪ C.

– For each clause cℓ and each variable xi of φ,
• if xi occurs positively in cℓ, then {vi, v′i} dominates {qℓ, q′ℓ},
• if xi occurs negatively in cℓ, then {qℓ, q′ℓ} dominates {vi, v′i},
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A true zone B U Y C false zone D H

Fig. 2 Example of a nice ordering. A rectangle represents an acyclic tourna-
ment, while a rectangle with rounded corners represents a regular tournament.
A plain arc between two patterns P and P ′ represents the fact that there is a
backward arc between every pair of vertices v ∈ P and v′ ∈ P ′. A dashed arc
means some backward arcs may exist between the patterns.

• if xi does not occur in cℓ, then introduce the paths (vi, qℓ, v
′
i) and (v′i, q

′
ℓ, vi).

– Introduce an acyclic tournament U = {up
i , ū

p
i | i ≤ n, p ≤ 2} of order 4n

such that U dominates A∪Y ∪C and B∪D dominates U . For each variable
xi, add the following paths,
• for all variable xk ̸= xi and all p ≤ 2, introduce the paths (vk, u

p
i , v
′
k)

and (v′k, ū
p
i , vk),

• introduce the paths (vi, u
1
i , v
′
i), (v

′
i, u

2
i , vi), (vi, ū

1
i , v
′
i) and (v′i, ū

2
i , vi).

– Finally, introduce an acyclic tournament H = {h1, h2} with topological or-
dering ⟨h1, h2⟩ and such that A ∪ B ∪ C ∪X ∪ Y ∪D dominates H and H
dominates U .

We call a vertex of X a variable vertex and a vertex of Y a clause vertex.
Furthermore, we say that the vertices (vi, v

′
i) (resp. (qℓ, q

′
ℓ)) is a pair of variable

vertices (resp. pair of clause vertices).

Definition 2. Let T be a tournament resulting from Construction 1. An order-
ing σ of T is nice if:

– ∆σ(A) = |A|−1
2 , ∆σ(B) = |B|−1

2 , ∆σ(C) = |C|−1
2 , and ∆σ(D) = |D|−1

2 ,
– σ respects the topological ordering of U ∪ Y ,
– A ≺σ B ≺σ U ≺σ Y ≺σ C ≺σ D ≺σ H, and
– for any variable xi, either A ≺σ vi ≺σ v′i ≺σ B or C ≺σ vi ≺σ v′i ≺σ D.

An example of a nice ordering is depicted in Figure 2. Let σ be a nice ordering,
we call the pattern corresponding to the vertices between A and B, the true
zone and the pattern after the vertices of C the false zone. Let (qℓ, q

′
ℓ) be a

pair of clause vertices and let (vi, v
′
i) be a pair of variable vertices such that

xi occurs positively (resp. negatively) in cℓ in φ. We say that the pair (vi, v
′
i)

satisfies (qℓ, q
′
ℓ) if vi and v′i both belong to the true zone (resp. false zone). Note

that there is no backward arc between {qℓ, q′ℓ} and {vi, v′i} if and only if (vi, v
′
i)

satisfies (qℓ, q
′
ℓ). Notice also that for any pair of variable vertices (vi, v

′
i) such

that xi does not appear in cℓ and (vi, v
′
i) is either in the true zone or in the false

zone, then there is exactly two backward arcs between {qℓ, q′ℓ} and {vj , v′j}.
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Lemma 2. Let T be a tournament resulting from Construction 1 and let σ be
a nice ordering of T . Then, we have ∆σ(T ) ≤ W + 2m+ 3n+ 4. Moreover, for
any vertex w ∈ V (T ) \ Y , we have dσ(w) < W + 2m+ 3n+ 4.

Proof. Let a be a vertex of A, there are at most |A|−12 = W+1
4 +m+n−1

2 backward

arcs between a and A \ {a}. By construction, there are |U ∪ Y ∪D| = W+1
2 +

3m+5n backward arcs between a and V (T )\A. Thus, we have dσ(a) ≤ 3W+1
4 +

7m+11n
2 < W + 2m+ 3n+ 4.

Let b be a vertex of B, there are at most |B|−12 = W−1
2 backward arcs between

b and B\{b}. By construction, there are at most |X| = 2n backward arcs between
b and V (T ) \B. Thus, we have dσ(b) ≤ W−1

2 + 2n < W + 2m+ 3n+ 4.

Let c be a vertex of C, there are at most |C|−12 = W−1
2 backward arcs between

c and C\{c}. By construction, there are at most |X| = 2n backward arcs between
c and V (T ) \ C. Thus, we have dσ(c) ≤ W−1

2 + 2n < W + 2m+ 3n+ 4.

Let d be a vertex of D, there are at most |D|−12 = W−1
4 + m+n

2 backward arcs

between d and D \{d}. By construction, there are |A∪U ∪Y | = W+1
2 +3m+5n

backward arcs between d and V (T )\D. Thus, the degreewidth of d with respect
to σ is at most 3W+1

4 + 7m+11n
2 < W + 2m+ 3n+ 4.

Let v be a vertex of X such that v ∈ {vi, v′i} for some variable xi of φ. There
are at most |X|−1 = 2n−1 backward arcs between v and X \{v}. If v belongs to
the true zone, then there are |C| = W backward arcs between v and C and none
between v and B. If v belongs to the false zone, then there are |B| = W backward
arcs between v and B and none between v and C. By construction there are
|U |
2 = 2n backward arcs between v and U . Let Yi = {qℓ, q′ℓ | xi ∈ cℓ}, if xi occurs
in the clause cℓ, then there is 2 backward arcs between v and {qℓ, q′ℓ} and none
otherwise. Since xi occurs exactly two times positively and two times negatively,

there are |Yi|
2 backward arcs between v and Yi. Moreover, by construction, there

are exactly |Y \Yi|
2 between v and Y \ Yi. The number of backward arcs between

v and Y is |Y |2 + 2 = m. Thus, we have dσ(v) ≤ W + m + 4n. Since n < m,
dσ(v) < W + 2m+ 3n+ 4.

Let u be a vertex of U . First, note that σ respects the topological ordering of
U , we have dU (u) = 0. There are |H| = 2 backward arcs between u and H. There
are |A| = W+1

2 +m+n backward arcs between u and |A| and |D| = W+1
2 +m+n

backward arcs between u and D. Let (vi, v
′
i) be a pair of variable vertices, since

vi ≺σ v′i ≺σ u or u ≺σ vi ≺σ v′i, by construction there is exactly one backward

arc between u and {vi, v′i}. Thus, there are |X|2 = n backward arcs between u
and |X|. Hence, dσ(u) = W + 2m+ 3n+ 3.

Let h be a vertex of H. There are |U | = 4n backward arcs between h and U
and none between h and V (T )\U . Thus, we have dσ(h) = 4n < W+2m+3n+4.

Finally, let qℓ be a vertex of Y . By construction, there are |A| = W+1
2 +m+n

backward arcs between qℓ and A and |D| = W+1
2 +m+n backward arcs between

qℓ. Let vi and v′i be a pair of variable vertices in X. If xi occurs in cℓ, then there
are at most two backward arcs between qℓ and {vi, v′i}. If xi does not occur in cℓ,
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then there is one backward arc between qℓ and {vi, v′i}. Thus, there are at most
n+3 backward arcs between qℓ and X. Hence, we have dσ(qℓ) ≤ W+2m+3n+4.

To show the correctness of our reduction, we need to consider nice orderings.
The following lemma transforms any ordering into a nice ordering.

Lemma 3. Let T be a tournament resulting from Construction 1 and let σ be
an ordering of T . There is a nice ordering σ′ of T such that ∆σ′(T ) ≤ ∆σ(T ).

Proof. Let σ be an ordering of T . First, if ∆σ(T ) > W + 2m+ 3n+ 4, then by
Lemma 2, for any nice ordering σ′ of T we have ∆σ′(T ) ≤ ∆σ(T ). Thus, we can
suppose that∆σ(T ) ≤ W+2m+3n+4. Second, if for any regular sub-tournament

T ′ among A,B,C or D, we have ∆σ(T
′) > |T ′|−1

2 , then by Theorem 1, we can

rearrange the vertices of this tournament so that ∆σ(T
′) ≤ |T ′|−1

2 . Further, we
show that it is possible to construct an ordering σ′ with ∆σ′(T ) ≤ ∆σ(T ) and
having the following properties:

Proof that A ≺σ D: Let a ∈ A be the rightmost vertex of A and d ∈ D be
the leftmost vertex of D. Toward a contradiction, suppose that d ≺σ a. Let
BCL = {t | t ∈ B ∪ C, t ≺σ a} and BCR = {t | t ∈ B ∪ C, d ≺σ t}. Note

that BCL ∪ BCR = B ∪ C. If |BCL| > |BCR|, then |BCL| > |B∪C|
2 = W .

Since A is a regular tournament, there are |A|−12 backward arcs between a
and A \ {a}. Since BCL ≺σ a, we have |BCL| backward arcs between BCL

and a. Hence, we have

dσ(a) ≥
|A| − 1

2
+ |BCL|

dσ(a) ≥
W − 1

4
+

m+ n

2
+W

dσ(a) ≥
5W − 1

4
+

m+ n

2
dσ(a) > W + 2m+ 3n+ 4.

We can prove similarly that if |BCL| ≤ |BCR|, we also reach a contradiction.
Therefore, we have A ≺σ D.

Proof that A ≺σ B and C ≺σ D: Let a ∈ A be the rightmost vertex of A
and b ∈ B be the leftmost vertex of B. Toward a contradiction, suppose that
b ≺σ a. If there is no vertex w ∈ U∪Y between b and a, then by construction,
we can exchange the positions of a and b without increasing the degreewidth
of σ. Suppose there is a vertex w ∈ U ∪ Y such that b ≺σ w ≺σ a. Let
BL = {b′ | b′ ∈ B, b′ ≺σ w} and BR = B \ BL. Since A is a regular

tournament, we have |A|−12 backward arcs between a and A \ {a}. Since
BL ≺σ a, we have |BL| backward arcs between BL and a. By the previous
item, we have a ≺σ D and thus, there are D backward arcs between a and



Degreewidth: a New Parameter for Solving Problems on Tournaments 11

D. Hence, dσ(a) ≥ |A|−1
2 + |BL|+ |D| which implies

|A| − 1

2
+ |BL|+ |D| < W + 2m+ 3n+ 4

W − 1

4
+

m+ n

2
+W − |BR|+

W + 1

2
+m+ n < W + 2m+ 3n+ 4

|BR| >
3W

4
− m

2
− 3n

2
− 15

4
.

Now consider the vertex w. We have |BR| backward arcs between w and
BR. Since w ≺σ a, we have w ≺σ D and thus, there are |D| backward arcs
between w and D. We have

dσ(w) ≥ |BR|+ |D|

dσ(w) ≥
3W

4
− m

2
− 3n

2
− 5

2
+

W + 1

2
+m+ n

dσ(w) ≥
5W

4
+

m

2
− n

2
− 13

2
> W + 2m+ 3n+ 4.

Since we reach a contradiction, we have A ≺σ B. By symmetry, we can use
the same argument to show that C ≺σ D.

Proof that B ≺σ C: Let b ∈ B be the rightmost vertex of B and c ∈ C be the
leftmost vertex of C. Toward a contradiction, suppose that c ≺σ b. If there
is no variable vertex between c and b, then we can exchange the positions
of c and b without increasing the degreewidth of σ. Suppose that there is a
variable vertex v ∈ X such that c ≺σ v ≺σ b. Let BL = {b′ | b′ ∈ B, b′ ≺σ

v}, CL = {c′ | c′ ∈ C, c′ ≺σ v}, BR = B \BL and CR = C \ CL.
Suppose there is a vertex w ∈ U ∪ Y such that w ≺σ v. Since A ≺σ B,
we have w ≺σ B or A ≺σ w. If w ≺σ B, then by construction, we have
dσ(w) ≥ |B|+ |D| > W + 2m+ 3n+ 3 which is a contradiction. If A ≺σ w,
then dσ(w) ≥ |A|+ |BR|+ |D| which implies

|A|+ |BR|+ |D| < W + 2m+ 3n+ 4

W + 2m+ 2n+ 1 + |BR| < W + 2m+ 3n+ 4

|BR| < n+ 3.

Moreover, by construction, dσ(v) ≥ |BL|+ |CR|. Thus,

|BL|+ |CR| ≤ W + 2m+ 3n+ 4

2W − |BR| − |CL| ≤ W + 2m+ 3n+ 4

|BR|+ |CL| ≥ W − 2m− 3n− 4

|CL| ≥ W − 2m− 4n− 7.

Now, since B is a regular tournament, there are |B|−12 backward arcs between
B \{b} and b. By construction, we have |CL| backward arcs between CL and
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b. So,

dσ(b) ≥
|B| − 1

2
+ |CL|

dσ(b) ≥
W − 1

2
+W − 2m− 4n− 7 > W + 2m+ 2n+ 4.

By symmetry, we can use the argument to find a contradiction if there is a
vertex w ∈ U ∪ Y such that v ≺σ w.

Proof that B ≺σ U ≺σ Y ≺σ C: Toward a contradiction, suppose that there
are two vertices w ∈ U ∪ Y and c ∈ C such that c ≺σ w. Suppose first that
C ≺σ w then we have dσ(w) ≥ |C| + |D| > W + 2m + 3n + 4 which is a
contradiction. Then we can partition C into CL = {c | c ∈ C ∧ c ≺σ w} and
CR = C \ CL. We know that CR is not empty and since C ≺σ D, we have
w ≺σ D. Then, we have dσ(w) ≥ |A|+ |CL|+ |D| which implies

|A|+ |CL|+ |D| ≤ W + 2m+ 3n+ 4

2W + 2m+ 2n+ 1− |CR| ≤ W + 2m+ 3n+ 4

|CR| ≥ W − n− 3.

Now, as we did in the other cases, if there is no vertex v between c and
w in σ such that (c, v) and (v, w) are forward arcs, we can exchange the
positions of c and w in σ without increasing the degreewidth. Note that here
we have several cases to consider: either v ∈ X or w ∈ U and v ∈ H. If
v ∈ X, then using the previous inequality, we obtain dσ(v) ≥ |B| + |CR| >
W + 2m + 3n + 4 which is a contradiction. Now, if w ∈ U and v ∈ H then
dσ(v) ≥ |CR|+ |D| > W + 2m+ 3n+ 4, also a contradiction. Therefore, we
have U ∪ Y ≺σ C.
By symmetry, we can show that B ≺σ U∪Y , using the same arguments (note
however that the case where w ∈ U and v ∈ H does not appear). Finally,
since by construction U ∪ Y is an acyclic tournament, we can ordering the
vertices of U ∪ Y so that U ≺σ Y .

Proof that A ≺σ X ≺σ D: If there are two vertices a ∈ A and v ∈ X such that
v ≺σ a, then by previous items, there is no clause vertex between v and a in
σ. Thus, we can swap the positions of a and v in σ without increasing the
degreewidth. That is, we can obtain an ordering σ′ with A ≺σ X. We prove
similarly that X ≺σ D.

Proof that D ≺σ H: Let h be a vertex of H. If there is a vertex u ∈ U such
that h ≺σ u, then by the previous item h ≺σ C ≺σ D and thus, dσ(h) ≥
|C| + |D| > W + 2m + 3n + 4 which is a contradiction. Hence, we have
U < h. By construction, we can put h after D in σ without increasing the
degreewidth. That is, we can obtain an order σ′ with D ≺σ H.

Proof that for any pair of variable vertices (vi, v
′
i), either vi ≺σ v′i ≺σ B or C ≺σ vi ≺σ v′i:

First, we show that for any vertex v ∈ X, we have either v ≺σ B or C ≺σ v
(i.e. v is either in the true zone or the false zone). We can not have B ≺σ v ≺σ

C since otherwise we would have dσ(v) ≥ |B|+|C| ≥ 2W > W+2m+3n+4.
If it exists a vertex b ∈ B such that b ≺σ v ≺σ C, then any vertex between
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b and v in σ is a variable vertex or a vertex of B and, we can exchange the
positions of c and v without increasing the degreewidth. If it exists a vertex
c ∈ C such that B ≺σ v ≺σ c, then any vertex between c and v in σ is a
variable vertex or a vertex of C and, we can exchange the positions of b and
v without increasing the degreewidth.
Now, let us show that for every pair vi and v′i of variable vertices, we have
vi ≺σ v′i ≺σ B or C ≺σ vi ≺σ v′i. Note that if v′i ≺σ vi ≺σ B or C ≺σ

v′i ≺σ vi, then we can exchange the positions of vi and v′i without increasing
the degreewidth. Let vi and v′i be a pair of variable vertices, we say that
(vi, v

′
i) is split if vi ≺σ B and C ≺σ v′i or if v′i ≺σ B and C ≺σ vi (i.e. if

vi and v′i are not in the same zone). Recall that the number of backward
arcs between any vertex u ∈ U and V \X is |A| + |D| + |H| = W + 2m +
2n + 3. Toward a contradiction let (vi, v

′
i) be a split pair. Suppose that

vi ≺σ v′i. Then, by construction, there are exactly two backward arcs between
up
i and {vi, v′i} and two backward arcs between ūp

i and {vi, v′i}. Always by
construction, for each pair of variable vertices (vj , v

′
j), there is exactly two

backward arcs between {u2
i , ū

2
i } and {vj , v′j} (either both u2

i and ū2
i are

incident to a backward arc if (vj , v
′
j) is not split or one of the two vertices

is incident to two backward arcs). Suppose without loss of generality that
the number of backward arcs between u2

i and X \ {vi, v′i} is greater or equal
to the number of backward arcs between ū2

i and X \ {vi, v′i}. That is, the
number of backward arcs between u2

i and X \ {vi, v′i} is at least n − 1 and
thus, the number of backward arcs between u2

i and X is at least n+1. Hence,
dσ(u

2
i ) > W+2m+3n+4 which is a contradiction. By symmetry, if v′i ≺σ vi,

we can show that either dσ(u
1
i ) > W+2m+3n+4 or dσ(ū

1
i ) > W+2m+3n+4

which is a contradiction. Hence, no pair of variable vertices is split, that is,
for each pair of variable vertices vi and v′i, we have vi ≺σ v′i ≺σ B or
C ≺σ vi ≺σ v′i.

Let φ be an instance of Balanced 3-SAT(4) and T its tournament resulting
from Construction 1. We show that φ is satisfiable if and only if there exists an
ordering σ of T such that ∆σ(T ) < W +2m+3n+4, which yields the following.

Theorem 2. Given a tournament T and an integer k, it is NP-complete to
compute an ordering σ of T such that ∆σ(T ) ≤ k.

Proof. Let φ be an instance of Balanced 3-SAT(4) and T its tournament
resulting from Construction 1. We show that φ is satisfiable if and only if it
exists an ordering σ of T such that ∆σ(T ) < W + 2m+ 3n+ 4.

First, let β be a satisfying assignment for φ. We construct a nice ordering σ
of T as follows. For each variable xi, if β(xi) = true then put vi and v′i in the
true zone. Otherwise, put vi and v′i in the false zone. By Lemma 2, for any vertex
w ̸∈ Y , we have dσ(w) < W + 2m + 3n + 4. Further, let qℓ be a clause vertex.
The number of backward arcs between qℓ and V (T ) \ X is equal to |A| + |D|.
Moreover, for every variable xi that does not occur in cℓ, there is exactly one
backward arc between {vi, v′i} and qℓ. For every variable xi ∈ cℓ, if the value
of xi in β satisfies cℓ, then there is no backward arc between {vi, v′i} and qℓ,
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otherwise there are two backward arcs between {vi, v′i} and qℓ. Thus, since there
is at least one variable in cℓ that satisfies cℓ, we have dσ(qℓ) ≤ W +2m+3n+2.
Hence, ∆σ(T ) < W + 2m+ 3n+ 4.

Now, let σ be an ordering of T such that ∆σ(T ) < W + 2m + 3n + 4. By
Lemma 3, we can suppose that σ is nice. We construct an assignment β for φ as
follows. For each variable xi, if vi and v′i are in the true zone, then we set xi to
true. Otherwise, if vi and v′i are in the false zone, then we set xi to false. Let cℓ
be a clause of φ. Since dσ(qℓ) < ∆σ(T ) < W +2m+3n+4, there is at least one
pair of variable vertices vi and v′i such that there is no backward arcs between
{vi, v′i} and qℓ. Thus, by construction, xi satisfies cℓ. Hence, β is a satisfying
assignment for φ.

3.3 An approximation algorithm to compute degreewidth

In this subsection, we prove that sorting the vertices by increasing in-degree is a
tight 3-approximation algorithm to compute the degreewidth of a tournament.
Intuitively, the reasons why it returns a solution not too far from the optimal are
twofold. Firstly, observe that the only optimal ordering for acyclic tournaments
(i.e. with degreewidth 0) is an ordering with increasing in-degrees. Secondly, this
strategy also gives an optimal solution for cutwidth in tournaments.

Theorem 3. Ordering the vertices by increasing order of in-degree is a tight
3-approximation algorithm to compute the degreewidth of a tournament (see Fig-
ure 3).

Proof. Let T be a tournament, and consider σapp an ordering obtained by sorting
the vertices of T in increasing order of in-degree. Let v be a vertex such that
dσapp

(v) = ∆σapp
(T ). Similarly, denote by σopt an optimal ordering for T . First,

notice that if there is a vertex u ∈ V (T ) such that 3dσopt(u) ≥ dσapp(v), then
σapp is a 3-approximate solution. So we can assume that for each u ∈ V (T ), we

have dσopt
(u) <

dσapp (v)

3 . We consider three cases and show contradiction to this
inequality in each of them.

Let us first define the following sets:D+ = {u ∈ V (T ) | (v, u) ∈ A(T ), u ≺σapp

v} and D− = {u ∈ V (T ) | (u, v) ∈ A(T ), v ≺σapp
u}. Note that dσapp

(v) =
|D+| + |D−|. Similarly, let R = {u ∈ V (T ) | v ≺σapp

u} and L = {u ∈ V (T ) |
u ≺σapp

v}. We have d+(v) = |D+|+ |R| − |D−| and d−(v) = |D−|+ |L| − |D+|.
Now, suppose first that L ≺σopt

v (i.e. every vertex on the left of v in σapp

remains on the left of v in σopt). We have dσopt
(v) ≥ |D+| which implies 2|D+| <

|D−|. Let ℓ be the leftmost vertex of R in σopt. Since d+(ℓ) ≤ d+(v), we have
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|N+(ℓ) ∩R| ≤ |D+|+ |R| − |D−|. Hence,

dσopt
(ℓ) ≥ |N−(ℓ) ∩R|

dσopt(ℓ) ≥ |R| − |N+(ℓ) ∩R|
dσopt(ℓ) ≥ |R| − |D+| − |R|+ |D−|
dσopt(ℓ) ≥ |D−| − |D+|

dσopt(ℓ) ≥
dσapp

(v)

3
, a contradiction.

Similarly, if v ≺σopt
R (i.e. every vertex on the right of v in σapp remains on the

right of v in σopt), then we can show by symmetry that for the rightmost vertex

r of L in σopt, we have dσopt
(r) ≥ dσapp (v)

3 , a contradiction.
Now suppose that there is at least one vertex of L on the right of v in σopt

and at least one vertex of R on the left of v in σopt. Let MR = {u | u ∈
D+, v ≺σopt u} and ML = {u | u ∈ D−, u ≺σopt v}. Since dσopt(v) <

dσapp (v)

3 ,

we have |ML|+ |MR| > 2dσapp (v)

3 . As we did before, let ℓ be the leftmost vertex
of R in σopt and r be the rightmost vertex of L in σopt. Since d+(ℓ) ≤ d+(v)
(resp. d−(r) ≤ d−(v)), we have |N+(ℓ) ∩ (R ∪MR)| ≤ |D+|+ |R| − |D−| (resp.
|N−(r) ∩ (L ∪ML)| ≤ |D−|+ |L| − |D+|).

Further, since ℓ ≺σopt v (resp. v ≺σopt r), we have ℓ ≺σopt MR∪R\{ℓ} (resp.
ML ∪ L \ {r} ≺σopt

r). Hence, we have

dσopt(ℓ) + dσopt(r) ≥ |N−(ℓ) ∩ (R ∪MR)|+ |N+(r) ∩ (L ∪ML)|
dσopt(ℓ) + dσopt(r) ≥

(
|R|+ |MR| − |N+(ℓ) ∩ (R ∪MR)|

)
+
(
|L|+ |ML| − |N−(r) ∩ (L ∪ML)|

)
dσopt

(ℓ) + dσopt
(r) ≥

(
|R|+ |MR| − |D+| − |R|+ |D−|

)
+
(
|L|+ |ML| − |D−| − |L|+ |D+|

)
dσopt(ℓ) + dσopt(r) ≥ |MR|+ |ML|

dσopt
(ℓ) + dσopt

(r) ≥ 2dσapp
(v)

3
.

Therefore, we have either dσopt(ℓ) ≥
dσapp (v)

3 or dσopt(r) ≥
dσapp (v)

3 , a contradic-
tion. Finally, note that the approximation factor is tight as shown by Figure 3.

4 Results on sparse tournaments

In this section, we focus on tournaments with degreewidth one, called sparse
tournaments. The main result of this section is that unlike in the general case,
it is possible to compute in polynomial time a sparse ordering of a tournament
(if it exists). We begin with an observation about sparse orderings (if it exists).

Lemma 4. Let T be a sparse tournament of order n > 4 and σ be an ordering of
its vertices. If σ is a sparse ordering, then for any vertex v such that d−(v) = i,
the only possible positions of v in σ are {i, i+ 1, i+ 2} ∩ [n].
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1

v1

2

v2

2

v3

3

v4

3

v5

2σapp: σopt: 1

v1

2

v4

2

v2

2

v3

3

v5

1 2 2 3

Fig. 3 Example of a tournament where the approximate algorithm can return
an ordering σapp (on the left) with degreewidth three while the optimal solution
is one in σopt (on the right). Coloured vertices are the ones incident to the
maximum number of backward arcs. all non-depicted arcs are forward arcs.

Proof. Let σ be an ordering where there are at most i − 2 vertices before v.
Therefore, at least two vertices of N−(v) are after v in σ, proving it is not a
sparse ordering.

Similarly, if we consider an ordering σ where there are at least i+ 3 vertices
before v. Therefore, at least two vertices of N+(v) are before v in σ, proving it
is not a sparse ordering.

Note that Lemma 4 gives immediately an exponential running-time algo-
rithm to decide if a tournament is sparse. However, we give in Subsection 4.2
a polynomial running-time algorithm for this problem. Before that we study a
useful subclass of sparse tournaments, we call the U -tournaments.

4.1 U-tournaments

In this subsection, we study one specific type of tournaments called U -tournaments.
Informally, they correspond to the acyclic tournaments where we reversed all the
arcs of its Hamiltonian path.

Definition 3. For any integer n ≥ 1, we define Un as the tournament on n
vertices with V (Un) = {v1, v2, . . . , vn} and A(Un) = {(vi+1, vi) | ∀i ∈ [n− 1]} ∪
{(vi, vj) | 1 ≤ i < n, i + 1 < j ≤ n}. We say that a tournament of order n is a
U -tournament if it is isomorphic to Un.

Figures 4(a) and 4(d) depict respectively the tournaments U7 and U8. This
family of tournaments seems somehow strongly related to sparse tournaments
and the following results will be useful later for both the polynomial algorithm to
decide if a tournament is sparse and the polynomial algorithm for minimum feed-
back arc set in sparse tournaments. To do so, we prove that each U -tournament
of order n > 4 has exactly two sparse orderings of its vertices that we formally
define.

Definition 4. Let P (k) = ⟨vk+1, vk⟩ be a pattern of two vertices of Un for some
integer k ∈ [n − 1]. For any integer n ≥ 2, we define the following special
orderings of Un:
– if n is even:

• Π(Un) is the ordering given by ⟨v1, P (2), P (4), . . . , P (n− 2), vn⟩.
• Π1,n(Un) is the ordering given by ⟨P (1), P (3), . . . , P (n− 2), P (n)⟩.
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U7:
v1 v2 v3 v4 v5 v6 v7

(a) The tournament U7.

Π1(U7):
v2 v1 v4 v3 v6 v5 v7

(b) The sparse ordering Π1(U7). Note
that v1 is the only vertex not incident to
any backward arc.

Π7(U7):
v1 v3 v2 v5 v4 v7 v6

(c) The sparse orderingΠ7(U7). Note that
v7 is the only vertex not incident to any
backward arc.

U8:
v1 v2 v3 v4 v5 v6 v7 v8

(d) The tournament U8.

Π(U8):
v1 v3 v2 v5 v4 v7 v6 v8

(e) The sparse ordering Π(U8). The
dashed forward arcs is a minimum feed-
back arc set of the tournament. Note that
all the vertices are incident to one back-
ward arc.

Π1,8(U8):
v2 v1 v4 v3 v6 v5 v8 v7

(f) The sparse ordering Π1,8(U8). Note
that v1 and v8 are the only vertices not
incident to any backward arc.

Fig. 4 The tournaments U7 and U8 and their sparse orderings. The non-depicted
arcs are forward arcs.

– if n is odd:
• Π1(Un) is the ordering given by ⟨P (1), P (3), . . . , P (n− 2), vn⟩.
• Πn(Un) is the ordering given by ⟨v1, P (2), P (4), . . . , P (n− 3), P (n− 1)⟩.

Figures 4(b) and 4(c) (and Figures 4(e) and 4(f)) depict the orderingsΠ1(U7)
and Π7(U7) (resp. Π(U8) and Π1,8(U8)) of the tournament U7 (resp. U8). One
can notice that these orderings are sparse and the subscript of Π indicates the
vertex (or vertices) without a backward arc incident to it in this ordering. In
the following, we prove that when n > 4 there are no other sparse orderings of
Un. However, note that there are three possible sparse orderings of U3 (namely,
Π1(U3) and Π3(U3) defined previously, as well as Π2(U3) := ⟨v3, v2, v1⟩) and
three sparse orderings of U4 (namely, Π(U4), Π1,4(U4) as defined before, and
Π ′(U4) := ⟨v2, v4, v1, v3⟩).

In order to prove that there are no other sparse orderings of Un, we start by
giving some properties on the position of the vertices; specifically, we refine the
statement of Lemma 4 in the case where the tournament is Un.

Lemma 5. In any sparse ordering σ of Un, the position of v1 (and vn) is either
1 or 2 (resp. n or n − 1). Furthermore, there are no pattern ⟨vi, vi+1⟩ in σ for
each i ∈ [n− 1].

Proof. We prove the first statement for the vertex v1. Using Lemma 4, we already
know that v1 is either at position 1, 2 or 3. Suppose the latter, so there are exactly
two vertices before v1. By construction, one of these two vertices has to be v2
and let vk be the other vertex before v1, where k ≥ 3. If in addition we have
k < n, then let us consider the vertex vk+1 which is after vk in σ. Therefore, we
have dσ(vk) ≥ 2, proving σ is not a sparse ordering. If k = n > 4, then v3 is
after vn, so we also have dσ(vn) ≥ 2. The proof for the vertex vn is similar.
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Let us now prove that there are no two consecutive vertices ⟨vi, vi+1⟩ for
each i ∈ [n − 1]. By contradiction, consider a sparse ordering σ such that vi
and vi+1 are consecutive. By definition of Un, the arc (vi+1, vi) is a backward
arc. Suppose first that i > 1. Since σ is sparse, then the in-neighbours of vi
(resp. vi+1) are exactly the vertices before vi (resp. vi+1). So the vertex vi−1 is
necessarily between vi and vi+1, yielding a contradiction.

Let us consider now the case i = 1. Note that if v1 is not the first vertex,
then vk for some k ≥ 3 is before v1, contradicting Lemma 4. Then v3 is after v2,
proving that dσ(v2) ≥ 2, a contradiction.

Theorem 4. For each integer n > 4 there are exactly two sparse orderings of
Un. Specifically, if n is even, these two sparse orderings are Π(Un) and Π1,n(Un);
otherwise, the two sparse orderings are Π1(Un) and Πn(Un).

Proof. We prove the theorem by induction on the number of vertices. First, we
show that Π1(U5) and Π5(U5) are the two only sparse orderings of U5. Using
Lemma 5, we know that v1 is either at position 1 or position 2 in any sparse
ordering. Suppose the former. Lemma 5 forbids the vertex v2 to be after v1,
then the only possible vertex at position 2 is v3 and the only possible remaining
position for v2 is the third one. Finally, we cannot have the pattern ⟨v4, v5⟩ by
Lemma 5, so the only possible sparse ordering of U5 with v1 in first position is
⟨v1, v3, v2, v5, v4⟩, that is Π5(U5).

Similarly, suppose now v1 is at position 2. Then the first vertex is necessarily
v2. Note that v3 cannot be at position 3 since it would have two backward arcs
(v3, v2) and (v4, v3). Then the only other option by Lemma 5 is v4. Then we
necessarily obtain the ordering ⟨v2, v1, v4, v3, v5⟩, that is Π1(U5).

Similarly, we prove that Π(U6) and Π1,6(U6) are the two only sparse tour-
naments of U6. Let us suppose that v1 is the first vertex. Then, as before v3 is
at position 2, and v2 at position 3. Note that v4 cannot be at position 4 since
it would have two backward arcs (v5, v4) and (v4, v3). Then the last possible
position for v4 is 5, which leads to the ordering ⟨v1, v3, v2, v5, v4, v6⟩, that is
Π(U6).

Finally, if we suppose that v1 is at position 2, using the same arguments as
for Π1(U5) we directly obtain the ordering Π1,6(U6).

Suppose now that Un respects the statement of the theorem, and let us prove
that Un+1 does too. Let us first consider the case where n is even. Note that if
we remove the vertex vn+1 from Un+1, we obtain exactly Un. Now, since n is
even, consider the ordering Π(Un) on which we will insert vn+1. By Lemma 5
we can only insert vn+1 at position n, and we obtain exactly Πn+1(Un+1). If
we now consider the ordering Π1,n(Un) on which we will also insert vn+1, then
by Lemma 5 we can only insert vn+1 at position n + 1, and we obtain exactly
Π1(Un+1). This concludes the case where n is even.

Let us now suppose n odd. Similarly as before, note that if we remove the
vertex vn+1 from Un+1, we obtain exactly Un. Consider first the orderingΠn(Un)
on which we will insert vn+1. By Lemma 5 we can only insert vn+1 at position
n+ 1, and we obtain exactly Π(Un+1). If we now consider the ordering Π1(Un)
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on which we will also insert vn+1, then by Lemma 5 we can only insert vn+1 at
position n, and we obtain exactly Π1,n+1(Un+1).

Since in every case, the vertex vn+1 has no other possible position, it proves
that there are no other sparse orderings of Un+1, concluding the proof.

4.2 A polynomial time algorithm for sparse tournaments

We give here a polynomial algorithm to compute a sparse ordering of a tour-
nament (if any). First of all, let us recall a classical algorithm to compute a
topological ordering of a tournament (if any): we look for the vertex v with the
smallest in-degree; if v has in-degree one or more, we have a certificate that the
tournament is not acyclic. Otherwise, we add v at the beginning of the ordering,
and we repeat the reasoning on T − v, until V (T ) is empty.

The idea of the original “proof” in [25, Lemma 35.1, p.97] was similar: con-
sidering the set of vertices X of smallest in-degrees, put X at the beginning of
the ordering, and remove X from the tournament. However, potential backward
arcs from the remaining vertices of V \ X to X may have been forgotten. For
example, consider a tournament over 9 vertices consisting of a U5 (with ver-
tex set {v1, . . . , v5}) that dominates a U4 (with vertex set {u1, ..., u4}) except
for the backward arc (u4, v5). It is sparse (⟨Π5(U5), Π1,4(U4)⟩) but the algo-
rithm returns the (non-sparse) ordering ⟨Π1(U5), Π1,4(U4)⟩ (v5 is incident to
two backward arcs). The problem is that this algorithm is too “local”; it will
always prefer the sparse ordering Π1(U2k+1) over Π2k+1(U2k+1), but it may be
necessary to take the latter. Therefore, to correct this, we needed a much more
involved algorithm, requiring the study of the U-tournaments and the notion of
quasi-domination (see Definition 6). Indeed, unlike the algorithm for the topo-
logical ordering, we may have to look more carefully how the vertices with low
in-degrees are connected to the rest of the digraph. These correspond to the case
where there exists a U -sub-tournament of T which either dominates or “quasi-
dominates” (see Definition 6) the tournament T . Because of the latter possibility
(where a backward arc (a, b) is forced to appear), we need to look for specific
sparse orderings, called M -sparse orderings (where a or b should not be end-
vertices of other backward arcs). As all the sparse orderings for U -tournaments
have been described, we can derive a recursive algorithm.

Definition 5. Let T be a tournament, X be a subset of vertices of T , and M
be a subset of X. We say T [X] is M -sparse if there exists an ordering σ of X
such that ∆σ(T [X])(X) ≤ 1 and dσ(v) = 0 for all v ∈ M . In that case, σ is said
to be an M -sparse ordering of T [X].

For example, U4[{v1, v2, v3}] is {v2}-sparse, because there exists a sparse
ordering σ := ⟨v3, v2, v1⟩ of U4[{v1, v2, v3}] such that dσ(v2) = 0. We remark
that T is sparse if and only if T is ∅-sparse. In fact, the algorithm described in
this section computes a ∅-sparse ordering of the given tournament (if any).

Observation 3. Let T be a tournament and X and M be subsets of vertices of
T . If T is M -sparse, then T [X] is M ∩X-sparse.
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Proof. Consider σ an ordering of the vertices of T such that it is M -sparse. The
restriction of σ to the vertices of X is also a sparse ordering, and dσ(v) = 0 for
all v ∈ M ∩X. Thus T [X] is also M ∩X-sparse.

Lemma 6. Let T be a tournament, let X and M be two subsets of V (T ) such
that T [X] dominates T . Then, T is M -sparse if and only if T [X] is M∩X-sparse
and T −X is M \X-sparse.

Proof. Suppose that T [X] is M ∩ X-sparse and that T − X is M \ X-sparse.
Then by concatenating the orderings, we obtain a M -sparse ordering for T . This
follows from the fact that we do not create any additional backward arcs by
concatenating since X dominates T −X.

Suppose that T is M -sparse. Then by Observation 3, T [X] is M ∩X-sparse
and T −X is M \X-sparse.

Corollary 1. Let T be a tournament and v be a vertex such that d−(v) = 0. Let
M be a subset of V (T ). Then T is M -sparse if and only if T−v is M \{v}-sparse.
Lemma 7. Let T be a tournament such that there exists a unique vertex v with
d−(v) = 1 and all the other vertices have in-degree at least two. Let w be the
unique in-neighbour of v and M be a subset of vertices of V (T ). Then T is
M -sparse if and only if v ̸∈ M and T − v is M ∪ {w} \ {v}-sparse.
Proof. Suppose first that T is M -sparse. Note that in any sparse ordering, the
first vertex is necessarily v otherwise any vertex placed at the first would have
two backward arcs incident to it, that is, the ordering would not be sparse.
Therefore, in any sparse ordering, there is a backward arc from w to v. Thus, we
have v ̸∈ M . Consider now a M -sparse ordering σ := ⟨v, σ′⟩ of T . Then, σ′ is also
a sparse ordering of T−v. Furthermore, notice that we have ∆σ′(w) = 0, as there
is already a backward arc from w to v in σ. Thus σ′ is a M ∪ {w} \ {v}-sparse
ordering of T − v.

For the other direction, suppose that v ̸∈ M and T − v is M ∪ {w} \ {v}-
sparse and let σ′ be a M ∪{w} \ {v}-sparse ordering of T − v. Consider now the
following ordering σ := ⟨v, σ′⟩ of T . Note that σ is sparse since there is only one
backward arc incident to v, namely (w, v). Therefore, σ is a M -sparse ordering
since σ′ is a M ∪ {w} \ {v}-sparse ordering.

Definition 6 (see Figure 5). Given a tournament T and two of its vertices
a and b, we say that a subset of vertices X quasi-dominates T if:
– there exists an arc (b, a) ∈ A(T ) such that a ∈ X and b ̸∈ X,
– (u, v) ∈ A(T ) for every (u, v) ∈ (X × (V (T ) \X)) \ {(a, b)},
– d−(b) ≥ |X|+ 1, and
– the vertex a has an out-neighbour in X.

In this case, we also say X (b, a)-quasi-dominates T .

Lemma 8. Let T be a tournament, X be a subset of vertices of T , and a and
b be two vertices such that X (b, a)-quasi-dominates T . Furthermore, let M be a
subset of V (T ). Then T is M -sparse if and only if T [X] is (M ∪{a})∩X-sparse
and T −X is (M ∪ {b}) \X-sparse
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a a′ b′ b′′ b

X T −X

Fig. 5 An example where X (b, a)-
quasi-dominates T . Non-depicted arcs
are forward. The vertex a′ is an out-
neighbour of a in X, and b′, b′′ are in-
neighbours of b in T −X.

Proof. Suppose first that X is (M ∪ {a}) ∩ X-sparse and that T − X is (M ∪
{b}) \ X-sparse (see Figure 6 for an example). We want to define a M -sparse
ordering of T . To do so, let σ′ be a (M ∪ {a}) ∩X-sparse ordering of X and σ′′

be a (M ∪ {b}) \X-sparse ordering of T −X. We define the ordering of T , let
σ := ⟨σ′, σ′′⟩. Note that σ is a sparse ordering. Indeed, for every vertex v different
from a and b, we have dσ(v) ≤ 1. Furthermore, we also have dσ(a) = dσ(b) = 1
since (b, a) ∈ A(T ) and there is no backward arc incident to a in σ′ and there is
no backward arc incident to b in σ′′.

a b

X T −X

Fig. 6 Example of a tournament T where X (b, a)-quasi-dominates T and X is
(M ∪ {a}) ∩ X-sparse and T − X is (M ∪ {b}) \ X-sparse. Vertices of M are
coloured orange.

Suppose now that T is M -sparse, and consider σ a M -sparse ordering of T .
If a ≺σ b, then (b, a) is a backward arc and dσ(a) = dσ(b) = 1. Therefore, the
restriction of σ to X is (M ∪ {a}) ∩ X-sparse (as b ̸∈ X). Furthermore, the
restriction of σ to T −X is (M ∪ {b}) \X-sparse (as a ̸∈ V \X). So we proved
the statement in this case.

Let us now consider the case b ≺σ a. As d−(b) ≥ |X|+1 and as every vertex
of X except a is an in-neighbour of b, then there exist two vertices b′ and b′′ in
V \ X such that (b′, b) ∈ A(T ) and (b′′, b) ∈ A(T ). Note that since dσ(b) ≤ 1,
either b′ or b′′ must be before b in the ordering. Without loss of generality,
suppose that b′ ≺σ b. By definition, a has an out-neighbour in X, call it a′.
Then (a′, b′) ∈ A(T ).

If a ≺σ a′, then b′ has at least two backward arcs: (a′, b′) and (a, b′), which
contradicts the ordering σ being sparse. Thus a′ ≺σ a and so a has at least two
backward arcs: (a, a′) and (a, b′). We also reach a contradiction, proving the case
b ≺σ a is impossible, and concluding the proof.

Definition 7. Let T be a tournament and X = (v1, . . . , vk) be a list of vertices
with k ≥ 2. We say that X satisfies the U -property if d−(v1) = 1 and for each
i ∈ {2, . . . , k}, we have (vi, vi−1) ∈ A(T ) and d−(vi) = i− 1.
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Lemma 9. Let T be a tournament and X be a list of vertices satisfying the
U -property. Then T [X] is the tournament Uk.

Proof. We will prove by induction the following assertion: the subtournament
T [{v1, . . . , vi}] is Ui for any i ≥ 1. The assertion is true for i = 1. Suppose that
it is true for i ≥ 1. Let us prove that it is true for i + 1. Let 1 ≤ j < i. As
v1, . . . , vi is Ui, then v1, . . . , vj−2, vj+1 are the in-neighbours of vj which is of
in-degree j − 1. Thus, vi+1 is a out-neighbour vj , that is, (vj , vi+1) ∈ A(T ) for
any 1 ≤ j < i. We deduce that T [{v1, . . . , vi+1}] is Ui+1, proving the statement.

Observation 4. Let T be a tournament and a list X = (v1, . . . , vk) of vertices
satisfying the U -property. Then vk has one in-neighbour in V (T ) \X.

Proof. SinceX satisfies the U -property, we have d−(vk) = k−1 and {v1, . . . , vk−2} ⊂
N−(vk) because of T [X] = Uk. Thus, we deduce that |N−(vk) \X| = 1.

Lemma 10. Let T be a tournament and a list X = (v1, . . . , vk) of vertices satis-
fying the U -property. Let w be the vertex of N−(vk)\X. We denote (v1, . . . , vk, w)
by X ′.
– If d−(w) = d−(vk), then X ′ is a U -sub-tournament dominating T .
– If d−(w) = d−(vk)+1, then X ′ is included in a U -sub-tournament dominat-

ing or quasi-dominating T .
– If d−(w) > d−(vk)+1, then X is a U -sub-tournament (w, vk)-quasi-dominating

T .
Remark that in every case X is included in a U -sub-tournament dominating or
quasi-dominating T .

Proof. We prove this lemma by induction on k the number of vertices of X. If
k = n− 1, then X ′ is a U -sub-tournament dominating T . Suppose now that the
result is true for k + 1. We will prove that it is true for k.

Observe that by Lemma 9, T [X] = Uk.
Suppose that d−(w) = d−(vk). Let v be a vertex of V (T ) \ (X ∪ {w}).

Let i ∈ [k]. Since T [X] is Uk, we have that d−(vi) = i − 1, if i > 1, and
d−(v1) = 1, otherwise. Then the in-neighbours of vi are in X ∪{w}. Thus, v is a
out-neighbour of vi, i.e., (vi, v) ∈ A(T ). As d−(w) = d−(vk), the in-neighbours of
w are in X ∪{w}. Thus, (vi, w) ∈ A(T ). We deduce that ∀v ∈ V (T )\ (X ∪{w}),
(u, v) ∈ A(T ),∀u ∈ X ∪ {w}. Therefore, X ∪ {w} dominates T .

Suppose that d−(w) = d−(vk)+1. Then d−(w) = k−1+1 = (k+1)−1 and
we deduce that X ′ = (v1, . . . , vk, w) satisfies the U -property. Thus, by induction,
X ′ is included in a U -sub-tournament dominating or quasi-dominating T .

Suppose that d−(w) > d−(vk) + 1. Let us show that X (w, vk)-quasi domi-
nates T . That is, we show that the four conditions for quasi-domination holds.
First, the arc (w, vk) ∈ A(T ) and w ̸∈ X. Let i ∈ [k−1]. Note that d−(vi) = i−1,
if i > 1, and d−(vi) = 1, otherwise. As T [X] = Uk, we have that V (T ) \ X ⊂
N+(vi). As d−(vk) = k−1 and as T [X] = Uk, then V (T )\ (X ∪{w}) ⊂ N+(vk).
Thus, (u, v) ∈ A(T ) for every (u, v) ∈ {X×(V (T )\X)}\{(vk, w)}. Furthermore,
d−(w) > d−(vk) + 1 = k − 1 + 1 = |X| and vk has a out-neighbour in X which
is vk−1. We deduce that X (w, vk)-quasi-dominates T .
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Algorithm 3: isMsparse
Data: T a tournament, M a subset of the vertices of T
Result: True if T is M-sparse and False otherwise

1 if |V (T )| ≤ 1 then return True ;

2 else if minv∈V (T ) d
−(v) ≥ 2 then return False ;

3 else if minv∈V (T ) d
−(v) = 0 then

4 v ←− the vertex of in-degree 0;
5 return isMsparse(T − v,M \ {v});
6 else if |{v ∈ V (T ) : d−(v) = 1}| = 1 then
7 v, w ←− two vertices such that d−(v) = 1 and (w, v) ∈ A(T );
8 return v ̸∈M and isMsparse(T − v, (M ∪ {w}) \ {v});
9 else

10 v, w ←− two vertices of in-degree 1 such that (w, v) ∈ A(T );
11 X ←− getUsubtournament(T ,(v, w));
12 if X dominates T then
13 return (isUkMsparse(X,M ∩X) and isMsparse(T −X, M \X));
14 else
15 a, b←− the vertices such that X (b, a)-quasi-dominates T ;
16 return (isUkMsparse(X,(M ∪ {a}) ∩X) and isMsparse(T −X, (M ∪ {b}) \X));

We can create the algorithm isUkMsparse which given (v1, . . . , vk) a U -
tournament and M a subset of these vertices, returns a boolean which is True
if and only if this tournament is M -sparse. We can also create the algorithm
getUsubtournament which given T a tournament, and X = (u1, . . . , uk) a list
of vertices such that d−(u1) = 1 and d−(ui) = i − 1 and (ui, ui−1) ∈ A(T ) for
all i ∈ {2, . . . , k}, returns a U -subtournament dominating or quasi-dominating
T . With these two previous algorithms, we can derive Algorithm 3 isMsparse.

Algorithm 1: getUsubtournament

Data: T a tournament, and X = (u1, . . . , uk) a list of vertices such that d−(u1) = 1 and

d−(ui) = i− 1 and (ui, ui−1) ∈ A(T ) for all i ∈ {2, . . . , k}.
Result: A U-subtournament dominating or quasi-dominating T .

1 w ←− a vertex of N−(uk) \X;

2 if d−(w) = d−(uk) then return X ∪ {w} /* this set dominates T */ ;

3 else if d−(w) = d−(uk) + 1 then return getUsubtournament(T,X ∪ {w}) ;
4 else return X /* this set (w, uk)-quasi-dominates T */ ;

Algorithm 2: isUkMsparse
Data: (v1, . . . , vk) a Uk tournament, M a subset of the vertices of Uk

Result: True if Uk is M-sparse and False otherwise
1 if k ≤ 2 then return True ;
2 else if k = 3 then return |M | ≤ 1 ;
3 else if k is even then return |M \ {v1, vk}| = 0 ;
4 else if k is odd then return (v1 ̸∈M or vk ̸∈M) and |M \ {v1, vk}| = 0 ;

Theorem 5. Algorithm 3 is correct. Hence, it is possible to decide if a tourna-
ment T with n vertices is sparse in O(n3) by calling isMsparse(T,∅).

Proof. Let us show that Algorithm 2 is correct. If k ≤ 2, then U2 is M -sparse for
any subset M of vertices of U2 as there is an ordering of U2 without backward
arcs (line 1). If k = 3, there are only 3 sparse orderings of U3. As the description
of these sparse orderings has been seen, we can see that U3 isM -sparse if and only
if M contains at most 1 vertex (line 2). If k ≥ 4 and k is even, we have showed
that there is a sparse ordering where every vertex is adjacent to a backward arc
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and exactly one other sparse ordering where only v1 and vk are not adjacent
to a backward arc. Thus Uk is sparse if and only if there does not exist i ∈
{2, . . . , k − 1} such that vi ∈ M . In other words Uk is M -sparse if and only if
M \{v1, vk} = ∅ (line 3). If k ≥ 4 and k is odd, we have showed that there exists
exactly two sparse orderings of Uk: one where v1 is the only vertex not adjacent
to a backward arc and one another where vk is the only vertex not adjacent to
a backward arc. Thus Uk is M -sparse if and only if M does not contain both v1
and vk (otherwise none of the two previous sparse orderings fit the condition)
and M does not contain a vertex vi such that i ∈ {2, . . . , k− 1}. In other words
Uk is M -sparse if and only if {v1, vk} ̸⊂ M and M \ {v1, vk} = ∅ (line 4). Thus,
we show that for each value of k ∈ [n], Algorithm 2 correctly decides if Uk is
M -sparse.

Algorithm 1 is correct by Lemma 10.
Let us show that Algorithm 3 is correct. If T is constituted by a single vertex

then T is trivially sparse (line 1). If minv∈V (T ) d
−(v) ≥ 2, then by Lemma 1, T is

not sparse (line 2). If T has a vertex v of in-degree zero, then by Corollary 1, T is
M -sparse if and only if T−v is M \{v}-sparse (lines 5). Otherwise, there exists a
vertex v such that d−(v) = 1. If v is the unique vertex of in-degree one, then by
Lemma 7, T is M -sparse if and only if v ̸∈ M and T −v is (M ∪{b})\{v}-sparse
(where b is the unique in-neighbour of v) (line 9). Otherwise, there exist at least
two vertices v and w of in-degree one. By Lemma 10, there exists X such that
either X dominates T , or X quasi-dominates T . If X dominates T , then T is
M -sparse if and only if X is M ∩X-sparse and T −X is M \X-sparse due to
Lemma 6 (line 14). Otherwise, there exists two vertices a and b such that X
(b, a)-quasi-dominates T , then by Lemma 8, T is M -sparse if and only if X is
(M ∪ {a}) ∩X-sparse and T −X is (M ∪ {b}) \X-sparse (line 17).

Let us now investigate the time complexity of the algorithms.
First we show that Algorithm 2 runs in time O(n). As M has size at most n

and computing |M | and |M \{v1, vk}| runs in time O(M) and thus the total time
is O(n). Let us now show that Algorithm 1 runs in time O(n2). As N−(uk) is of
size at most n, then finding w (line 1) can be done in time O(n). Computing the
in-degree of w costs O(n). The in-degree of uk is k − 1 by definition. According
to the master theorem, Algorithm 1 runs in time O(n2). Let us now show that
Algorithm 3 runs in time O(n3). Computing minv∈V (T ) d

−(v) and finding the
vertices which minimises the in-degree runs in time O(n2). The vertices (a, b)
in Line 15 such that X (b, a)-quasi-dominates T can be computed during Al-
gorithm 1 and thus it results in an empty cost. All the other operations runs
in O(n2) time. According to the master theorem of analysis of algorithm, this
algorithm runs in time O(n3).

Observe that we can easily modify Algorithm 3 to obtain a sparse ordering (if
exists). Next corollary follows from the above algorithm.

Corollary 2. The vertex set of a sparse tournament on n vertices can be de-
composed into a sequence Un1

, Un2
, . . . , Unℓ

for some ℓ ≤ n such that each T [Uni
]

dominates or quasi-dominates T [ ∪
i<j≤ℓ

Unj
] and

∑
i∈[ℓ] ni = n.
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5 Degreewidth as a parameter

5.1 Dominating set parameterized by degreewidth

A set of vertices X of a directed graph G is a dominating set (DS) if for each
vertex v ∈ V (G) \X, we have N+(v)∩X ̸= ∅. Observe that in graphs where de-
greewidth is zero, DS is of size one. Similarly, for tournaments with degreewidth
equals to one, the DS is of size at most two. That is, we have trivial solutions
for DS for acyclic and sparse tournaments. This motivates us to look for FPT
algorithm parameterized by degreewidth. In the following, we develop an FPT
algorithm for Dominating Set using universal families. Before that we observe
that size of a dominating is always bounded by the size of degreewidth.

Observation 5. The size of a minimum dominating set of a tournament T is
at most ∆(T ) + 1.

Proof. Consider an ordering σ of T such that ∆σ(T ) is the degreewidth of T .
Then, the first vertex v in σ dominates every vertex except the ones from which
there is a backward arc incident to it. Therefore, {v}∪N−(v) is a dominating set
of T . Since v is the first vertex in σ, the size of N−(v) is bounded by degreewidth.
Hence, the statement follows.

Theorem 6. Dominating Set is FPT in tournaments with respect to de-
greewidth.

Proof. Let T be a tournament with degreewidth bounded by some integer k.
We want to compute a dominating set of T of size at most s. Using Theorem 3,
we can find a 3-approximation for degreewidth. Let σ be the ordering given by
Theorem 3. Therefore, we have ∆σ(T ) ≤ 3k.

Our algorithm proceeds in two steps as described below. First is the sepa-
ration phase where we define a subgraph of T and use n-p-q-lopsided universal
family to identify a solution. Next, we verify it. To state the algorithm formally,
we first define n-p-q-lopsided universal families.

Given a universe U and an integer i, we denote all the i-sized subsets of U
by

(
U
i

)
. We say that a family F of sets over a universe U with |U | = n, is an

n-p-q-lopsided universal family if for every A ∈
(
U
p

)
and B ∈

(
U\A
q

)
, there is an

F ∈ F such that A ⊆ F and B ∩ F = ∅.

Lemma 11 ( [16]). There is an algorithm that given n, p, q ∈ N constructs an
n-p-q-lopsided universal family F of cardinality

(
p+q
p

)
·2o(p+q) log n in time |F|n.

Let |V (T )| = n. We fix an arbitrary ordering of the vertices V (T ) and write
V (T ) as [n] and for X ⊆ [n], we write T [X] to denote the tournament induced
on X. The algorithm is described as follows.

1. For each integer 1 ≤ p ≤ s, we construct an n-p-3kp-lopsided universal family
F using the algorithm in Lemma 11.
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2. Then, for each F ∈ F , let C1, . . . , Cℓ be the strongly connected components
of T [F ], ordered according to their first vertex in σ (i.e. the first vertex of
Ci is before all the vertices of Cj in σ for each j > i). Check if C1 is a
dominating set for T . If so, we return C1, otherwise it is a no-instance.

We now show the correctness of our algorithm. Suppose (T, s) is a yes-
instance. Let S denote a dominating set of size s of T . Let N = {v ∈ N+(S)\S |
v ≺σ u, for some u ∈ S}. Observe that |N | ≤ 3ks. From the definition of n-
s-3ks-lopsided universal family, we have that there exists a set F ∈ F such
that

S ⊆ F, and (1)

N ∩ F = ∅. (2)

Now we show that if Ci ∩ S ̸= ∅ for some i ∈ [ℓ], then Ci ⊆ S. Suppose not. Let
v ∈ Ci ∩ S, and let u be a vertex of Ci \ S. Since Ci is strongly connected, let
(u := v1, v2, . . . , vp := v) be a path from u to v in Ci. The vertex u ∈ F , so it is
not in N by (2). Furthermore, it is not in S by definition. So by definition of N ,
u is not incident to any vertex of S. So v2 ∈ Ci \S. By repeating this reasoning,
we obtain v /∈ S, a contradiction.

Finally, we show that C1 is a dominating set of T of size at most s. Suppose
not. Let Ci be the first strongly connected component in S for some i > 1.
Note that given two distinct strongly connected components Cj and Cj′ with
j < j′, there is, by definition, no arc between them in T [F ], and therefore in T .
So there is no backward arcs from Cj′ to Cj in T . This observation shows that
Ci does not dominate the vertices of C1, . . . , Ci−1 in T . Similarly, the vertices of
C1, . . . , Ci−1 cannot be dominated by any vertices of Cj for any j > i. So S is
not a dominating set of T , a contradiction. Therefore, we can return the vertices
of C1 as a solution of Dominating Set in T . The algorithm invokes Lemma 11
s times. Hence, it runs in time 2O(s log(s(3k+1))nO(1). Finally, Observation 5 gives
the theorem.

5.2 FAST and FVST in sparse tournaments

A forbidden pattern corresponds to the patterns Π(U2k) for any k ≥ 1 as well
as Π ′(U4) := ⟨v2, v4, v1, v3⟩. An example of the forbidden pattern Π(U8) is
depicted in Figure 4(e). We say a sparse ordering has forbidden pattern if a
contiguous subsequence of the ordering is a forbidden pattern. Intuitively, the
problem of such patterns is that the set of their backward arcs is not a minimum
fas. Hopefully, we can use Theorem 4 in such a way that if the pattern Π(U2k)
appears, we can restructure it into Π1,2k(U2k).

Lemma 12. Let T be a sparse tournament on n vertices. Then, it is possible to
construct in time O(n3) a sparse ordering for T without forbidden patterns.

Proof. Let σ be a sparse ordering of T where for some 2 ≤ 2k ≤ n, the ver-
tices {v1, . . . , v2k} form the forbidden pattern Π(U2k) (or Π ′(U4)). That is,



Degreewidth: a New Parameter for Solving Problems on Tournaments 27

σ := ⟨σ1, Π(U2k), σ2⟩ (resp. ⟨σ1, Π
′(U4), σ2⟩). Let σ′ be the ordering we get

by replacing Π(U2k) by Π1,2k(U2k). That is, σ
′ := ⟨σ1, Π1,2k(U2k), σ2⟩. Observe

that σ′ is a sparse ordering. Let us now show that there is no vertex of v1, . . . , v2k
lying in a forbidden pattern in σ′. By contradiction, suppose that σ′ has a forbid-
den pattern Π(U2k′) (or Π ′(U4)) for some 2 ≤ 2k′ ≤ n on the subset of vertices
V ′.

Case 1: {v1, . . . , v2k} ⊆ V ′. This is not possible since it is easy to see that the
pattern Π1,2k(U2k) cannot be contained in the pattern Π(U2k′) (resp. Π ′(U4)).

Case 2: |{v1, . . . , v2k} ∩ V ′| ≥ 1. Then, since the patterns are consecutive
sequence of vertices, either the first or the last vertex of Π1,2k(U2k) is in V ′.
Without loss of generality, suppose that the first vertex of Π1,2k(U2k) is in V ′,
that is, v2 ∈ V ′. Note that v2 has a backward arc incident to it in Π1,2k(U2k).
Since σ′ is a sparse ordering, v2 cannot have another backward arc to/from
a vertex in V ′. Hence, v2 can not form the forbidden pattern Π(U2k′) (resp.
Π ′(U4)) in V ′.

Hence, in both cases, we have a contradiction. Thus, no forbidden pattern
containing a vertex from v1, . . . , v2k is in σ′. Therefore, given a sparse ordering
σ of T , we can replace the forbidden patterns and obtain a sparse ordering of T
containing no forbidden patterns. Next we show that we can do it in time O(n).
The correctness of the following process follows from the above argument.

Given a sparse ordering σ := ⟨v1, v2, . . . , vn⟩, we first check there is no arc
(vi+1, vi). If so, we swap these vertices in the ordering. Then, we check similarly
for the pattern Π ′(U4) for every four consecutive vertices and replace them with
Π1,4(U4). We can now assume σ is a sparse ordering without these patterns.

Now, we define the span of an arc in an ordering σ to be the number of
vertices between its end-vertices in σ, including the end-vertices. For example,
let σ := ⟨v1, v2, . . . , vn⟩, then in Π(U2k) for some k ≥ 2, the span of the arc
(v3, v1) is three. Note that the sequence of backward arcs in Π(U2k) (taken
from left to right) starts and ends with backward arcs of span of three, with
(eventually) backward arcs of span four in between. The idea of the following
algorithm is to look for such sequences.

We try to look for the sequence Π(U2k) from left, for some k ≥ 2. We check
for the backward arc (vs+2, vs) of span three with minimum position s. Then,
we continue to look for backward arcs of span four and stop at a backward
arc of span three as described next. We continue as long as there is an arc
(vs+2i+4, vs+2i+1) ∈ A(T ) for i ≥ 0. Suppose that we end at i = t such that
s+ 2t+ 4 < n, then we check if (vs+2t+5, vs+2t+3) ∈ A(T ).

If so, we have found the forbidden patternΠ(U2t+6) on the vertices {vs, . . . , vs+2t+5}.
We reorder this pattern according to the order Π1,2t+6(U2t+6) in σ. We repeat
the process from the vertex vs+2t+7 by checking for a backward arc of span three.

If not, we repeat the process starting from the vertex vs+2t+5. Hence, we
replace all the forbidden patterns in time O(n) by the above left to right scan.
Since by Theorem 5, a sparse ordering σ of T can be constructed in O(n3) time,
we have proved the lemma.
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If a sparse ordering does not contain a forbidden pattern then its set of
backward arcs is a fas. Hence, we obtain the following result.

Theorem 7. FAST is solvable in time O(n3) in sparse tournaments on n ver-
tices.

Proof. Let T be a sparse tournament and let σ be a sparse ordering without
forbidden patterns of V (T ) computed using lemma 12. We prove that the set of
backward arcs of T in the ordering σ is a minimum feedback arc set of T . In the
following, let B = ((u1, v1), . . . , (uk, vk)) be the set of backward arcs defined by
the ordering σ. The set B is ordered from the left to right according to the head
of the arcs, that is, the arc (ui, vi) appears before the arc (uj , vj) if vi ≺σ vj . Let
S be any feedback arc set. To show that B is a minimum feedback arc set, we
construct an injective function f : B → S in the following way. We start with
the function f : B → {∅} and then we assign iteratively a backward arc of B to
an arc of S according to the order of B from (u1, v1).

Let (ui, vi) be a backward arc of B to assign (all the backward arcs (uj , vj)
with j < i have already been assigned). Let xi be the vertex right after vi in σ.
We have xi ̸= ui since otherwise ⟨ui, vi⟩ would be isomorphic to the forbidden
pattern Π(U2). Thus, (vi, xi, ui) is a cycle (as σ is a sparse ordering) and there
is at least one arc in S among (vi, xi), (xi, ui), and (ui, vi) (as S is a feedback
arc set). We consider the following four cases.

(a) If (ui, vi) ∈ S, then we set f((ui, vi)) := (ui, vi).

(b) If (ui, vi) ̸∈ S and (xi, ui) ∈ S, then we set f((ui, vi)) := (xi, ui).

(c) If (ui, vi) ̸∈ S, (xi, ui) ̸∈ S and f−1((vi, xi)) = ∅, then we set f((ui, vi)) :=
(vi, xi).

(d) Otherwise, let yi be the vertex right after the vertex xi in σ. We will show
later that yi ̸= ui. Since (vi, yi, ui) is a cycle, there is an arc a in S ∩
{(vi, yi), (yi, ui)}. We set f((ui, vi)) := a.

We now show the correctness of case (d). We have to show that yi ̸= ui. Toward
a contradiction, suppose that yi = ui. As we are not in cases (a), (b) or (c),
(vi, xi) ∈ S and there exists (uj , vj) ∈ B such that f(uj , vj) = (vi, xi) and j < i.
The arc (uj , vj) has been assigned to (vi, xi) as a case (b) or (d), thus uj = xi.
There is at most one vertex between vj and vi since otherwise, vi ̸∈ {xj , yj}
and thus we would not have f((uj , vj)) = (vi, xi). There is at least one vertex
between vj and vi, since otherwise ⟨vj , vi, xi, ui⟩ would be forbidden pattern
Π(U4). Therefore, there is exactly one vertex xj between vj and vi then, there
is a backward arc adjacent to xj since otherwise we would have f((uj , vj)) =
(vj , xj) or f((uj , vj)) = (xj , vi) from cases (b) or (c). This backward arc is
leaving xj , since otherwise this backward arc would be assigned after (uj , vj)
and therefore (uj , vj) would be assigned in same way as before. Thus, we have
j = i− 1 and (xi, vi−1) has been assigned to (vi, xi) as a case (d). By induction,
it exists a pattern ⟨vℓ, xℓ = vℓ+1, uℓ = xℓ+1, yℓ+1 = vℓ+2, . . . , yi−2 = vi−1, xi−1 =
ui−2, yi−1 = vi, ui−1 = xi, ui⟩ in σ which is a forbidden pattern. Hence, yi ̸= ui.
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We now show the correctness of f . First, we show that f((ui, vi)) ̸= ∅ for
every arc of B. For cases (a) to (c), f((ui, vi)) ̸= ∅ since (vi, xi, ui) is a cycle. In
case (d), (vi, yi, ui) is a cycle and S ∩ {(vi, yi), (yi, ui)} ≠ ∅. So, f((ui, vi)) ̸= ∅.

Further, we show that for every arc (s, t) ∈ S, we have |f−1((s, t))| ≤ 1. If
(s, t) has been assigned as a case (a), then (s, t) is a backward arc and f((s, t)) =
(s, t) and since it is not possible to assign a backward arc to another backward
arc than itself, we have |f−1((s, t))| = 1. Note that if (s, t) is not a backward
arc, then for any backward arc (ui, vi), such that f((ui, vi)) = (s, t), (s, t) is
incident to (ui, vi). Hence, we have either s = vi and t ∈ {xi, yi} (when (s, t)
is incident to vi in cases (c) or (d)) or s ∈ {xi, yi} and t = ui (when (s, t) is
incident to ui in cases (b) or (d)). Hence, (s, t) can be assigned by at most two
different backward arcs and s is the head of one of them and t is the tail of one
of them. Suppose that there exists a backward arc (ui, vi) such that t = ui which
is assigned to (s, t) and another backward arc (uj , vj) such that s = vj which
is also assigned to (s, t). Suppose that (uj , vj) is assigned to (s, t) as a case (c),
we then have s = vj and t = xj = ui. Since vi ≺σ vj , (ui, vi) is assigned before
(uj , vj), we have f−1((s = vj , t = xj = ui)) ̸= ∅ when (uj , vj) is assigned which
is a contradiction. Now, suppose that (uj , vj) is assigned to (s, t) as a case (d),
we then have s = vj and t = yj = ui. As (ui, vi) has been assigned to (vj , ui),
then vj is either xi or yi. Moreover, there is another backward arc (uℓ, vℓ) such
that f(uℓ, vℓ) = (vj , uℓ = xj) since we are in case (d). As before vj is either
xℓ or yℓ. Therefore, there are two cases: either we have the pattern ⟨vi, vℓ, vj⟩
either we have the pattern ⟨vℓ, vi, vj⟩. In the first case, (ui, vi) is assigned to
(vj = yi, t = ui) as a case (d). Thus, there exists a backward arc leaving xi = vℓ
which contradicts that σ is sparse. In the second case, (uℓ, vℓ) is assigned to
(yℓ = vj , uℓ) as a case (d). Hence, there exists a backward arc leaving xℓ = vi
which contradicts that σ is sparse. We can conclude that f is an injective function
which implies that |B| ≤ |S|. Hence, |B| is a minimum feedback arc set.

Finally, since σ can be computed in time O(n3) by Lemma 12, a solution of
FAST for T can also be computed in polynomial time by taking the backward
arcs of T in σ.

For FVST, we show that the problem is difficult to solve on sparse tournaments.

Construction 2. Let G be a cubic graph with vertices {v1, . . . , vn}. We con-
struct the following tournament T along with the sparse ordering σ.
– For every vertex vi, let N(vi) = {vj , vk, vℓ} be the neighbours of vi in G. We

introduce the pattern pi =< hi, u
j
i , u

k
i , u

ℓ
i , ti, x

1
i , x

2
i , x

3
i >.

– For every pair of vertices vi and vj such that i < j, we order σ such that
pi ≺σ pj.

– Introduce the following backward arcs. For each vertex vi, construct the back-
ward arc (ti, hi) (vertex backward arc). For every edge vivj such that i < j,

construct the backward arc (ui
j , u

j
i ) (edge backward arc). Any other arc is a

forward arc.

Let T be a tournament and X be a solution for FVST. A backward arc
(t, h) is said saturated by X (or simply saturated) if for every vertex x such that
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h ≺σ x ≺σ t, we have x ∈ X. Note that if a backward arc (t, h) is saturated then
every cycle C that contains only (t, h) as a backward arc is eliminated when X
is deleted. Moreover, since X is a feedback vertex set, if (t, h) is not saturated,
then {t, h} ∩X ̸= ∅.

Lemma 13. Let T be a tournament resulting from Construction 2 along with
the sparse ordering σ. Let X be a solution for FVST in T . There is a solution
X ′ such that |X ′| ≤ |X|:
– for every edge backward arc (ui

j , u
j
i ), we have |{ui

j , u
j
i} ∩X ′| = 1, and

– for every v ∈ X ′, v is adjacent to a backward arc.

Proof. First, we show that we can construct a solution X ′ such that for every
edge backward arc (ui

j , u
j
i ) we have {ui

j , u
j
i}∩X ′ ̸= ∅. Let (ui

j , u
j
i ) be the leftmost

edge backward arc such that {ui
j , u

j
i}∩X = ∅. It means that (ui

j , u
j
i ) is saturated

and so {x1
i , x

2
i , x

3
i } ⊂ X. Let vk and vℓ be the two neighbours of vi different from

vj in G. We set X ′ = X ∪ {uj
i , u

k
i , u

ℓ
i} \ {x1

i , x
2
i , x

3
i }. We now show that X ′ is a

solution to FVST. Let C be a cycle containing x ∈ {x1
i , x

2
i , x

3
i }. C necessarily

contains a backward arc (u, v) such that v ≺σ x ≺σ u and by construction
(u, v) is an edge backward arc. If v ≺σ ui

j then by hypothesis {u, v} ∩ X ̸= ∅
and thus, {u, v} ∩ X ′ ̸= ∅ which implies that X ′ removes C. Otherwise, we
have v ∈ {uj

i , u
k
i , u

ℓ
i} ⊂ X ′ and X ′ removes C. Hence C is removed by X ′.

We apply this strategy until there is no edge backward without a vertex in X ′.
Further, let (ui

j , u
j
i ) be an edge backward arc such that {ui

j , u
j
i} ⊂ X. We set

X ′ = X ∪ {hi} \ {uj
i}. Let C be cycle containing uj

i . If C contains the vertex
backward arc (ti, hi) then C is removed by the deletion of hi. Otherwise, C
contains an edge backward arc and since every edge backward arc contains a
vertex in X ′, then C is removed by X ′.

Let v be a vertex in X ′ such that v is not adjacent to a backward arc. By
construction v is uj

i vertex and thus, any cycle C containing v also contains an
edge backward arc a. Since every edge backward arc contains a vertex in X ′ then
X ′ \ {v} contains the vertex in a ∩X ′ and thus X ′ \ {v} removes C. Hence, we
can remove v from X ′.

Theorem 8. FVST is NP-complete on sparse tournaments.

Proof. Let G be a cubic graph and T be a sparse tournament resulting from
Construction 2 along with the sparse ordering σ. We show that G contains a
vertex cover of size c if and only if T has a solution for FVST of size c+ |E(G)|.

Let S be a vertex cover of size c for G. We construct a solution X for FVST in
T . For each vertex vi ∈ S, we set hi ∈ X. For each vertex vi ̸∈ S, let vj , vk and vℓ
be the three neighbours of vi. We set {uj

i , u
k
i , u

ℓ
i} ⊂ X. Finally, for any edge vivj

such that {vi, vj} ⊂ S, we set ui
j ∈ X. Let C be a cycle of T . If C contains only

one backward arc that is a vertex backward arc (ti, hi), then either vi ∈ S and
C is removed by the deletion of hi or vi ̸∈ S and C is removed by the deletions
of uj

i , u
k
i and uℓ

i (where vj , vk and vℓ are the neighbours of vi). Otherwise, C
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contains an edge backward arc (uj
i , u

i
j) and since {uj

i , u
i
j}∩X ̸= ∅, C is removed

by X. Hence X is a solution for FVST in T and we have |X| = c+ |E(G)|.
Let X be a solution of size c+ |E(G)| for FVST with respect to Lemma 13

property. We construct a vertex cover S for G. For each vertex backward arc
(ti, hi), if (ti, hi) is not saturated then we set vi ∈ Si. Let vivj be an edge of G.

Since (ui
j , u

j
i ) contains exactly one vertex inX, then at least one vertex backward

arc among (ti, hi) and (tj , hj) is not saturated. Thus, either vi or vj belongs to
S and vivj is covered. Hence, we construct a vertex cover for G of size c.

6 Conclusion
In this paper, we studied a new parameter for tournaments, called degreewidth.
We showed that it is NP-hard to decide if degreewidth is at most k, for some natu-
ral number k and we proceeded to design a 3-approximation for the degreewidth.
One may ask if there is a PTAS for this problem. Then, we investigated sparse
tournaments, i.e., tournaments with degreewidth one and developed a polyno-
mial time algorithm to compute a sparse ordering. Is it possible to generalise
this result by providing an FPT algorithm to compute the degreewidth? We
also showed that FAST can be solved in polynomial time in sparse tournaments,
matching with the known result that Arc-Disjoint Triangles Packing and
Arc-Disjoint Cycle Packing are both polynomial in sparse tournaments [7].
Therefore, the question arise: can this parameter be used to provide an FPT
algorithm for FAST in the general case? Furthermore, we showed an FPT al-
gorithm for DS w.r.t degreewidth. Are there other domination problems e.g.,
perfect code, partial dominating set, or connected dominating set that is FPT
w.r.t degreewidth? Lastly, we also can wonder if this parameter is useful for
general digraphs.
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