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Abstract: In this paper, a novel surrogate model for shape-parametrized vehicle drag force prediction 1

is proposed. It is assumed that only a limited dataset of high-fidelity CFD results is available, typically 2

less than ten high-fidelity CFD solutions for different shape samples. The idea is to take advantage 3

not only of the drag coefficients, but also physical fields such as velocity, pressure and kinetic energy 4

evaluated on a cutting plane in the wake of the vehicle and perpendicular to the road. This additional 5

’augmented’ information provides a more accurate and robust prediction of the drag force, compared 6

to a standard surface response methodology. As a first step, an original reparametrization of the 7

shape based on combination coefficients of shape principal components is proposed, leading to a 8

low-dimensional representation of the shape space. The second step consists in determining principal 9

components of the x-direction momentum flux through a cutting plane behind the car. The final step 10

is to find the mapping between the reduced shape description and the momentum flux formula to 11

achieve an accurate drag estimation. The resulting surrogate model is a space-parameter separated 12

representation with shape principal component coefficients and spatial modes dedicated to drag-force 13

evaluation. The algorithm can deal with shapes of variable mesh, by using an optimal transport 14

procedure that interpolates the fields on a shared reference mesh. The Machine Learning algorithm 15

is challenged on a car concept with a shape design space of dimensional three. With only two well- 16

chosen samples, the numerical algorithm is able to return a drag surrogate model with reasonable 17

uniform error over the validation dataset. An incremental learning approach involving additional 18

high-fidelity computations is also proposed. The leading algorithm is shown to improve the model 19

accuracy. The study also shows the sensitivity of the results with respect to the initial experimental 20

design. As a feedback, we discuss and suggest what appear to be the correct choices of experimental 21

designs for best results. 22

Keywords: Automotive engineering; drag force; surrogate model; reduced-order model; machine 23

learning; data-driven; limited data; shape parameters; far field; optimal transport 24

1. Introduction 25

In automotive Engineering, drag reduction is a crucial step aimed at improving 26

aerodynamic to increase a vehicle range. As it has a major impact on architecture and design 27

of the product, aerodynamic is among the first performances to be studied and optimized. 28

The design convergence is split between physical and numerical testing. While physical 29

testing allows for faster iteration and more precise results, it is limited by the possibilities 30

offered in a wind tunnel facility. It is often used in final stages of the development, with 31

fine-tuning and approval in mind. On the contrary, numerical simulation is used very early 32

in a project to initiate the design convergence, by eliminating non-compliant design and 33
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propose solutions to improve the aerodynamic performance. However each simulation is 34

time-consuming and costly. A typical automotive simulation involves turbulence models 35

and unsteady computation, leading to restitution delay in hours. Shape optimization is 36

often used in this context to propose small evolutions on various locations to improve the 37

global performance. The design variables are mostly defined by the three-dimensional 38

CAD shape parametrization. For standard vehicles, the admissible design domain can be 39

rather big with numerous parameters. Among the reference computational approaches 40

for shape optimization, one can distinguish two main families of methods: gradient-based 41

methods and surrogate modeling techniques. 42

1.1. Gradient-based approaches 43

The first family considers gradient-based or descent-based optimization algorithms. 44

These iterative methods require at least the evaluation of the gradient of the cost function 45

(the drag coefficient in the context of this paper) with respect to the shape variables. For 46

the evaluation of the gradient, adjoint-based methods have marked a significant progress 47

in optimization techniques. The calculation of the gradient using the adjoint method was 48

introduced by Lions [1], then further developed e.g. by Pironneau [2] and Jameson [3], 49

[4]. The key feature of the adjoint method is that the numerical complexity to evaluate 50

the gradient does not depend on the number of variables, allowing its application to 51

high-dimensional parametric problems. Although extensively utilized in the aeronautical 52

field, this method is still relatively underused in automotive aerodynamics. The adjoint 53

method requires the development of an additional code, the so-called adjoint code. The 54

case of adjoint methods for unsteady computations is a harder task since the primal time- 55

dependent solution has to be stored. Let us mention in this context the work by Cheylan et 56

al. [5] where an adjoint solver has been derived from a Lattice Boltzmann Method code for 57

the Navier-Stokes equations, including a large eddy simulation (LES) turbulence model. 58

However, adjoint-based shape optimization is limited in practical applications due to 59

the iterative and computationally expensive nature of CFD simulations. This makes it 60

difficult to meet the demands of fast, interactive design optimization, where rapid feedback 61

is essential. Moreover, in the automotive industry, design is often driven by aesthetic 62

constraints, which are difficult to quantify mathematically. This makes it challenging to 63

integrate them directly into an optimization process. 64

1.2. Surrogate modeling 65

The second family of methods groups together all the surrogate modeling techniques. 66

A surrogate model is based on approximation methods such as regression to build an 67

easy-to-compute approximate cost function. For that, a design of computer experiment 68

(DoCE) is used. The first step is to choose a sampling strategy of the admissible design 69

space. Then high-fidelity (HF) computations are run to evaluate the cost function at these 70

sample points. The so-called Response Surface Methodology (RSM) is widely used in the 71

Computer-Assisted Engineering community because of its simplicity of design and setup. 72

RSM can be built with various approximation method such as Radial Basis Function [6], [7], 73

Gaussian Process [8] or AI tools such as regression-based Artificial Neural Networks [12]. 74

However, for high-dimensional design problems, a significant number of HF compu- 75

tations is needed. Latin Hypercube Sampling (LHS) strategy allows to sample a hypercube 76

domain with a number of samples equal to the dimension d. However, it is known to be 77

generally not sufficient to get an accurate response surface. An acknowledged empirical 78

law is to consider a number of samples equal to d times a constant (between 3 and 5 for 79

aerodynamic studies). In the automotive industry, this leads to an unrealistic budget of 80

computations. This is why innovative methods that require fewer input samples, such as 81

the approach proposed in this paper, are being explored. By approximating the results of 82

expensive and time-consuming CFD simulations, surrogate models enable the creation of 83

rapid, interactive design tools that significantly speed up the evaluation and optimization 84

process. 85
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1.3. Shape parametrization 86

Another important topic is the way to parametrize the car shapes. The performance of 87

the optimization process can strongly depend on the shape parametrization. Some CAD 88

parameters variations may have a very weak influence on the drag value. Of course the 89

"true" manifold of parameters of interest is not known a priori. Moreover, for technical 90

and practical reasons, engineers may only consider and manipulate meshed geometries 91

as ’objects-of-study’. For different CAD samples, the mesh software may produce meshes 92

with different mesh connectivity. Sometimes, the CAD parameters change during the study. 93

If the surrogate model is built with those initial parameters, any changes would necessitate 94

retraining the model. In that case, one has to imagine a reparametrization of the vehicle 95

shapes from the available meshes. This will be discussed in this paper. 96

1.4. Adding information from available volume fields 97

As mentioned above, surface response methodologies can build regression functions 98

of drag coefficients from various shape parameter sample HF computations. By solely 99

retrieving aerodynamic coefficients from high-fidelity calculations, a significant part of the 100

information contained in the results is lost. It appears advantageous to leverage ancillary 101

information such as velocity fields, pressure distributions, or kinetic energy. As drag coeffi- 102

cients are correlated with these fields, one can expect more accurate drag force predictions 103

providing correlated information. Volume fields defined on meshes are highly dimensional 104

by nature. In order to get a low-dimensional representation of them, dimensionality re- 105

duction techniques such as principal component analysis (PCA, [9]), proper orthogonal 106

decomposition (POD, [10]), locally linear embedding (LLE, [11]), multidimensional scal- 107

ing or neural-based encoders [12] can be used. In the case of parametric problems, one 108

can combine both dimensionality reduction with response surface methods to predict the 109

reduced variables to get a parametric reduced-order model of the field. 110

As presented later on in Section 2 (methodology), the whole drag force is the integral 111

of the normal stresses exerted onto the vehicle skin. Thus the drag force is a function of the 112

pressure field and the velocity gradient. A way to derive a more physical drag force is to 113

achieve a low-order surrogate model of the skin normal stresses. Another way to evaluate 114

the drag force is to adopt a so-called far field approach where the drag force can be well- 115

approximated by the integral of a difference of momentum fluxes over an arbitrary cutting 116

plane, preferably located in the wake of the vehicle (this will be detailed and explained in 117

Section 2). In this case, the drag force depends on the pressure distribution, velocity and 118

kinetic energy fields. A key advantage of far field formulas is that the cutting plane can be 119

the same for all the car shapes of interest, allowing us for an easier principal component 120

analysis and dimensionality reduction. 121

1.5. Scope, objectives and structure of the paper 122

Classical RSM for drag prediction often require extensive input data, with hundreds 123

to thousands of evaluations (simulations) needed to achieve acceptable accuracy. This 124

evaluation-intensive requirement is not compatible with industrial processes where de- 125

velopment times are short. Generating large datasets is not only time-consuming but also 126

financially expensive. In the literature, there is a lack of surrogate models trained with 127

a limited amount of input data, ideally of the order of the number of shape parameters. 128

A big shortcoming of RSM is that they usually only make use of quantities of interest 129

(here drag forces) that are often scalar, with all the physical fields being lost. Moreover, 130

many current surrogate models are designed for predicting drag of cars with significant 131

geometric modifications or even different vehicle models. These models are useful in the early 132

stages of development to assess the bulk geometry. However, during the fine styling phase, 133

where modifications are minimal (often just a few centimeters) these models become less 134

effective. There is a clear gap in the literature regarding models that can accurately predict 135

drag for such small geometric changes and with only limited input data. To overcome this 136

scientific challenge, we have to parameterize the car shape in such a way that drag force 137
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responses are strongly correlated to the shape parameters. There is also a constraint of 138

low-dimensional representation since the dataset is made of few evaluations and one can 139

only consider few degrees of freedom for the identification of the operator that maps shape 140

into drag force. 141

These constraints lead us to consider an enhanced surrogate model with the following 142

features: 143

• low-dimensional reparametrization of the vehicle geometry; 144

• incorporation of physical fields to enrich the data and raise the information content 145

without additional CFD computations. This represents the biggest difference from 146

traditional methods; 147

• reliance on physical formulas for calculating drag forces; 148

• ability to compute sensitivities, i.e. accuracy for small geometry variations. 149

Let us also emphasize that the "limited evaluations" constraint sets the work apart 150

from methods relying on extensive datasets (like deep neural networks and related data- 151

intensive ML approaches). In addition, the use of artificial data generative AI systems 152

cannot meet the requirement of accuracy for slight geometric changes (final fine styling 153

phase). 154

The paper is organized as follows. Section 2 is dedicated to the methodology of the 155

method. It includes integral formulas of drag force (section 2.1), the shape encoding and 156

reparametrization (section 2.2), the low-order representation of the momentum formula in 157

the wake cutting plane (section 2.3), the definition of the drag surrogate model (section 2.4) 158

and its use for a new ’query’ shape (section 2.6). Section 3 gathers all the numerical 159

experiments and validations being done. The paper will end up with concluding remarks 160

and perspectives in Section 4. 161

1.6. Related works 162

This section is intended to give an overview of the recent literature and related works 163

in the context of surrogate modeling and machine learning methods for automotive drag 164

force prediction. In aerodynamic studies, the performance of a design is often evaluated 165

based on the drag coefficient. Some models only predict this scalar coefficient, while others 166

predict the entire flow field, from which the drag is computed. Both approaches require 167

extensive input data to achieve high prediction accuracy. Two main categories of models 168

emerge in the literature: those used in early-phase project development with a broad 169

range of shape variations, and those designed for more specific geometries variations. The 170

ShapeNet dataset 1 is commonly employed for training models that need to handle diverse 171

car shapes. For instance, [14], proposed a method using Gaussian Process with optimized 172

weights to predict drag coefficient along with pressure and velocity field surrounding 173

simplified 3D cars (without spoilers, tires, side mirrors) of this dataset. Car shapes are 174

parameterized using a Polycube map, which allows for a fixed-length representation of 175

all shapes. The positions of PolyCube mesh surface points are used as for the GP model. 176

Trained with 889 shapes, the model the model’s prediction accuracy improves as the 177

training set size increases, with the error decreasing from 5.4% for 100 samples to 3.4% 178

for 889 samples. Additionally,the model achieves an average Mean Squared Error of 0.48 179

on velocity and 8.1 on pressure when trained with the full dataset. A manifold based 180

approach was presented in [19], where authors use a Locally Linear Embedding, to predict 181

the drag of 3D car shapes. The method assumes that drag coefficient of a car can be obtained 182

through linear combination of 5 neighboring cars in the manifold of car shapes. To build 183

the manifold, the signed distance function of 60 car shapes from ShapeNet dataset was 184

used. An overall average relative percent error of 11.5% is achieved with this approach. 185

In [18] the authors applied a similar method to estimate the airflow around the vehicle 186

using with a reduced input dataset. The model was constructed using the signed distance 187

1 https://shapenet.org/

https://shapenet.org/
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function 70 car shapes, including various types like sedans and sports cars. The model 188

achieved an L2 error on the velocity field ranging from 0.56% to 1%, depending on the 189

car type. Neural Networks (NN), especially Convolutional Neural Networks (CNN) have 190

been widely adopted due to their efficacy in extracting spatial features. For instance, [31] 191

proposed an improved ResNeXt model [34] that uses 2D depth and normal renderings 192

to represent 3D car geometries. By training on 9,070 shapes from ShapeNet, their model 193

achieved an overall average drag prediction error of 2.4%. The Shapenet dataset is also 194

used by [37] to train a coordinate-based multilayer perceptron to predict flow field around 195

a 2D car profile. Trained on 1812 profiles, derived from the central vertical cross-section 196

of 3D shapes of the ShapeNet dataset, the model achieves an average MSE of 7.15% for 197

drag prediction. Similarly, [20] uses Convolutional Neural Networks on arbitrary 2D 198

primitives to predict airflow around 2D car silhouettes. This model returns a prediction 199

error of 15.34 %. In [23], a U-Net [36] architecture is employed to predict drag coefficients 200

and flow field of car shapes from the geometry [35]. This model uses a signed distance 201

function for 3D geometry representation and is trained on up to 10,080 samples, achieving a 202

maximum absolute error of approximately 2.5% in drag prediction and 2.8% on the L2 error 203

of field prediction. Alternatively, a Geodesic Convolutional Neural Network [38] is used 204

in [21] to predict pressure and velocity distribution on the surface of a 3D car. As in [14], 205

the car geometries are remeshed using a Polycube map for consistent representation. The 206

model trained on approximately 2,000 randomly generated car shapes, report an accuracy 207

of 51% for new prediction. The accuracy of the model can reach up to 70% when the model 208

is training dataset is augmented with 54 real car shapes. This Geodesic Convolutional 209

Neural Network is used in [39] in for drag optimization. The GCNN-based approach 210

outperforms traditional methods like Kriging in creating an surface response for optimal 211

drag coefficient prediction. However no details on the error or accuracy of the surface 212

response is provided by authors. A optimization study is also presented in [32], where the 213

authors introduce MeshSDF, a model designed for the generation and optimization of 3D 214

geometries. The model learns from point cloud representations of the 3D geometry and 215

uses a CNN to predict the pressure field over the shape. Trained on 1,400 car shapes from 216

the ShapeNet dataset, the model is employed to generate optimized shapes that minimize 217

pressure drag from an initial configuration. However, the authors provide no details on the 218

accuracy of their pressure field predictions or the resulting drag estimations. 219

Another category of models focuses on studying specific geometric variations for fine 220

styling adjustments. These models aim to predict drag or flow fields when a defined car 221

geometry undergoes specific modifications. This is the focus of our paper, as such models 222

are important for optimizing aerodynamic performance. Despite their importance, there is 223

limited research on applying these types of models within the automotive industry. In [16], 224

a mathematical model is built to generate new silhouettes of a sedan parameterized with 225

21 design parameters, and then estimate their drag coefficient.The mathematical model is 226

constructed using a two-step procedure to predict the drag coefficient from the coordinates 227

of 52 control points. First, Principal Component Analysis (PCA) is applied to reduce the 228

number of variables used for the geometry representation. These principal components are 229

then used in a linear regression model to predict the drag coefficient. The performance of 230

the regression model for drag prediction is evaluated for different training sample sizes, 231

ranging from 100 to 1000. As the input sample size increases, the mean absolute percentage 232

error decreases from 13.86% to 9.49%. For the largest sample size, 70% of the predictions 233

have an error below 10%. However, the error can still reach up to 65% for certain silhouette 234

types. Scaling up to 3D geometries, a Radial Basis Function is used in [13] to map design 235

shape parameters to drag coefficient of a 3D car with 12 shape parameters. Initially, with 236

164 high-fidelity evaluations from Latin hypercube sampling, the model achieves a 3.7% 237

prediction error for the optimal shape. By using an Adaptive Multi-Scale RSM methodology, 238

which refines the response surface in an iterative manner, the error is reduced to less than 239

1% with increased sample sizes (280 to 480). This approach also makes the model less 240

sensitive to the number and distribution of input samples compared to traditional RSM 241



Version September 25, 2024 submitted to Computation 6 of 25

methods methodologies. Closest to our work, [15] proposes a model that combines 242

Proper Orthogonal Decomposition (POD) reduction with kriging interpolation to evaluate 243

pressure and velocity fields on the surface of a car. In their approach, POD is applied to the 244

snapshot matrix of results from a Detached Eddy Simulation (DES) for a car shape with 245

three parameters. A kriging model is then used to interpolate the POD basis coefficients 246

based on shape modifications.The model is trained using multiple datasets with varying 247

distributions and input sample sizes ranging from 8 to 38. As the number of input samples 248

increases, the relative error decreases from 2.3% to 1.1% for pressure prediction and from 249

2.9% to 1.7% for viscosity prediction. With a Latin hypercube dataset of 20 samples, the 250

mean error in drag prediction using the estimated fields is 0.3%. Additionally, a variable 251

fidelity approach is explored to enhance the high-fidelity DES snapshots with lower fidelity 252

Reynolds-Averaged Navier-Stokes (RANS) snapshots. However, this approach did not 253

yield better prediction results for the test case considered. 254

The reviewed approaches highlight the use of extensive input data for developing 255

effective models in automotive drag force prediction. They also reveal a notable gap in 256

research concerning fine-tuning models for specific geometric variations. 257

2. Methodology 258

2.1. Drag force evaluation methods 259

Aerodynamic simulations of automotive vehicles are conducted at very high Reynolds 260

numbers, typically of the order 107 involving thin boundary layers and developed turbu- 261

lence. To address these high Reynolds number flows, the solver relies on the Large Eddy 262

Simulation (LES) method. The LES is a numerical modeling approach aimed at directly 263

capturing the large unsteady turbulent structures. Furthermore, it is combined with a 264

Smagorinsky subgrid scale (SGS) model as closure model. This combination enables the 265

representation of turbulent features at a smaller scale than the primary grid resolution, 266

thereby enhancing the precision of the models. These two concurrent approaches empower 267

the solver to faithfully represent turbulent flows across various scales. 268

The evaluation of the drag force fx can then be carried out through the following 269

equations [25,26]: 270

f =
∫∫

Sv

(
(p − p0) n − τ · t

)
dσ, fx = f · x̂ (1)

where p represents the static pressure, p0 denotes the infinite unperturbed pressure, x̂ is 271

the unit vector in the x direction, τ represents the viscous stress tensor, n stands for the 272

unitary normal vector on the vehicle’s surface Sv, and t is the tangential unit vector. The 273

viscous stress tensor is calculated as τ = ν (∇u +∇uT), with ν representing the kinematic 274

viscosity and ∇u denoting the velocity gradient tensor. 275

Rather than determining aerodynamic forces through the integration of stresses on 276

the vehicle surface, the drag force can also be evaluated on another ’virtual’ surface into 277

the fluid domain. Assuming a bounding domain which is far enough from the vehicle, 278

the drag force can be estimated on a fixed rear cutting plane Scp which is orthogonal to x̂, 279

located in the wake of the vehicle, according to the so-called far field formula, also known 280

as Onorato formula [28]: 281

fx =
∫∫

Scp

(
p0 − p + ρ [u0 ux − (ux)

2]
)

dS. (2)

Here, ρ represents the fluid density, u0 is the free stream velocity, and ux is the velocity 282

component in the direction of interest x. This will allow us to get snapshot fields that 283

are defined on the grid Scp that will do not depend on the vehicle shapes. The surface 284

drag coefficient is computed from the aerodynamic force fx with the formula [26]: Cd A = 285

fx/( 1
2 ρ0u2

0). 286

Because of the use of a LES turbulence model (see [27]), the Navier-Stokes solver 287

returns unsteady solutions. However, when evaluating vehicle performance, metrics such 288

as drag coefficient Cd A are usually searched as constant values. The LES-based Navier- 289
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Stokes solutions are expected to reach a stationary flow after a transient phase, in the 290

sense of a stationary stochastic process (stationary flow being averaged over a suitable 291

time window). Thus, the drag coefficient Cd A is typically computed from time-averaged 292

quantities to return an expectation value. When computing a mean far field drag, a careful 293

attention must be paid to evaluate mean values of nonlinear terms like (ux)2. 294

The shape-parametrized reduced-order surrogate model proposed in this paper is 295

composed of three stages: i) shape encoding; ii) extraction of proper orthogonal modes on 296

the cutting plane; iii) surrogate model of force density and drag force. In what follows, we 297

give details of the three stages. 298

2.2. Shape encoding 299

In the context of shape design optimization in Automotive Engineering, the assess- 300

ment of performance often requires the evaluation of numerous geometrical variations of 301

the vehicle through a numerical design of experiment for example. To generate deformed 302

geometries from a reference one, a direct morphing approach can be used. Local regions 303

of reference geometry are transformed by defining a control area, where specific displace- 304

ment are imposed, a free area, free to move; and a fixed area, which remain stationary 305

during the morphing process. Assume that the shape of the vehicle depends on p CAD 306

parameters (µk)k=1,...,p that are gathered into a vector µ. The domain of admissible shape 307

parameters µ is denoted by M ⊂ Rp. In the sequel, the car shape for parameter µ will 308

be denoted by S(., µ). It will be assumed that each shape S(., µ) is a slight variation of a 309

reference shape denoted by Sre f (.) = S(., µre f ). 310

Figure 1. Morphing regions on the well-known Ahmed body with one CAD parameter acting on the
global height. Control areas are represented in green, free area in purple and the boundary areas in
blue.

To capture as much information as possible from the entire 3D shape and be able to 311

discriminate different admissible shapes, it is important to have a more informative and 312

discriminating descriptor, able to characterize the principal components of geometrical 313

variation. For efficiency purpose, such a shape encoding has also to be set up in a rather 314

low-dimensional space. 315

The procedure used in the present work is explained in the sequel. As it is assumed 316

that the morphed geometry S(., µ) is a slight variation from the reference surface Sre f (.). It 317

can be characterized by a shape displacement vector field δ(·, µ) ∈ [L2(Sre f )]3, evaluated 318

on the reference shape: 319

S(·, µ) = Sre f (·) + δ(·, µ). (3)

The idea is to approximate all the admissible displacements in a rather low-dimensional 320

vector space defined by a suitable orthogonal reduced basis. This can be done for example 321

from a method of snapshots of shapes. 322

Let {S(., µk)}k=1,...,Ns be a set of Ns precomputed deformed shapes from a suitable 323

CAD parameter sampling {µ1, ..., µNs}. From these shape snapshots, it is easy to find an 324

orthogonal basis q
ℓ
(.) ∈ [L2(Sre f )]3, ℓ = 1, ..., K, K ≤ Ns, either by means of a principal 325

component analysis (PCA) or more simply by means of a Gram-Schmidt (GS) orthogonal- 326

ization procedure. If Ns is big enough, it is preferable to apply a PCA to find the K principal 327

components, expecting that K < Ns. In the case of limited data with Ns small, one can 328
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consider K = Ns and simply use the GS algorithm (i.e. QR factorization in the discretized 329

context). Thus, for a query parameter vector µ ∈ M, 330

S(·, µ) ≈ Sre f (.) +
K

∑
ℓ=1

νℓ(µ) q
ℓ
(·). (4)

The linear combination coefficients (νℓ(µ))ℓ=1,...,K provide a set of descriptors of the shape 331

S(., µ). They are computed from the orthogonal projection of δ(., µ)) onto the vector space 332

spanned by the basis functions qℓ(·): 333

νℓ(µ) =
(
δ(·, µ), q

ℓ

)
[L2(Sre f )]3

. (5)

The feature vector ν(µ) then serves as the new global shape descriptor to encode the geom- 334

etry S(., µ). This approach enables the creation of new shape descriptors that offer a more 335

descriptive information than the CAD parameters. By leveraging the detailed information 336

captured at the local level from local features, this method provides a comprehensive 337

representation of the overall shape, resulting in a more informative and nuanced global 338

shape descriptor set. 339

Discretized formalism 340

For computational purposes, any car shape is discretized thanks to a Finite Element 341

(FE) triangular mesh as triangular elements are better suited for meshing complex geome- 342

tries, such as detailed 3D car models. Let us assume a shape triangulation made of Nv 343

vertices, Nv >> 1. The FE displacement fields δ(., µ) as well as the orthogonal fields q
ℓ
(.) 344

are stored as large vectors δµ and qℓ respectively. The shape encoding algorithm is the 345

following: 346

1. Offline stage: assume that a snapshot database of shape displacements 347

D =
[
δµ1 , δµ2 , ..., δµNs

]
∈ R3Nv×Ns

is available. From an SVD analysis or a QR factorization of D, compute an orthogonal 348

reduced basis q1, ..., qK ∈ R3Nv . Define the matrix 349

Q = [q1, ..., qK] ∈ R3Nv×K;

2. Online stage: for a query CAD parameter µ, compute a mesh of the shape S(; , µ). 350

Then compute the discrete displacement field δµ and the POD coefficients vector 351

ν(µ) = QTδµ ∈ RK. (6)

Remark that if Ns is small and the QR factorization D = QR is used (in this case 352

K = Ns), then 353

R = QT D ∈ RK×K

is the matrix of the POD coefficients vector of each displacement vector δµ1 , δµ2 , ..., δµNs of 354

D. 355

2.3. Knowledge extraction and reduced-order representation in the cutting plane 356

As already seen in the previous section, for a deformed shape S(., µ), the aerodynamic 357

drag can be estimated by integrating the physical scalar field 358

κ(., µ)
def
= p0 − p(., µ) + ρ [u0 ux(., µ)− u2

x(., µ)]
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over a cutting plane Scp using the far field formula: 359

Cd A(µ) =
1

1
2 ρ0u2

0

∫∫
Scp

κ(., µ) dSy. (7)

The quantity κ(., µ) ∈ L2(Scp) can be seen as a drag force density per unit surface over the 360

cutting plane Scp. As each new shape is a slight deformation of the reference shape, the 361

resulting flow field is also a variation of that of the reference configuration. Then the field 362

force density κ(·, µ) can be computed as the reference one plus a deviation ∆κ(·, µ): 363

κ(., µ) = κre f (.) + ∆κ(., µ). (8)

Once again, from the different snapshot solutions {κ(., µk)}k=1,...,Ns previously computed 364

with a high-fidelity CFD solver, one can extract an orthogonal reduced basis ψℓ(.) ∈ L2(Scp), 365

ℓ = 1, ..., K. That allows us to approximate the variation ∆κ(., µ) in a low-dimensional 366

vector space spanned by the orthogonal modes ψℓ, i.e. 367

∆κ(., µ) ≈
K

∑
ℓ=1

bℓ(µ)ψℓ(.). (9)

For the numerical implementation, the cutting plane is discretized using a Cartesian mesh 368

or a Finite Element mesh composed of Ncp nodes. The FE discrete fields κ(., µ) as well 369

as the orthogonal basis (ψℓ(.))ℓ are stored as large vectors κµ and ψℓ respectively. The 370

variation fields ∆κ(., µ) are also stored as vectors ∆κµ = κµ − κre f . The algorithm is then 371

the following: 372

1. Compute the snapshot matrix U ∈ RNcp×Ns of field forces by collecting results of the 373

high-fidelity CFD solver for the Ns training shapes: 374

U =
[
∆κµ1 , · · · , ∆κµNs

]
. (10)

2. Extract the modes ψℓ ∈ RNcp , ℓ = 1, ..., K by performing either a principal component 375

analysis or a QR factorization of matrix U, depending of the number of snapshots. 376

Then define the matrix 377

P = [ψ1, ...ψK] ∈ RNcp×K.

For very limited snapshot data, it is preferable to use a QR factorization. In this case 378

we have K = Ns and U = PT with T ∈ RK×K an upper triangular matrix. Since the 379

matrix P is semi-orthogonal, we have T = PTU. 380

2.4. Parametric surrogate model 381

Equations (8),(9) invite us to search κ(., µ) in the form 382

κ(., µ) = κre f (.) +
K

∑
ℓ=1

bℓ(µ)ψℓ(.)

for a new query vector µ, with corresponding shape S(., µ). One can then use the formula (7) 383

to compute Cd A(µ). But of course the coefficients bℓ(µ) are not known and a ’closure’ is 384

needed. 385

In the previous Section 2.2, we have considered a shape encoding defined by the 386

coefficient vector ν = ν(µ). The partial information we have on the shape S(., µ) is 387

described by ν(µ). So it is better to consider the combination coefficients bℓ as functions 388

of ν(µ): 389

κ(., µ) = κre f (.) +
K

∑
ℓ=1

bℓ(ν(µ))ψℓ(.). (11)
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The coefficients bℓ(ν(µ)) can be seen as nonlinear features of ν(µ). But actually these 390

functions are unknown. In the context of limited data, a large model with multiple degrees 391

of freedom such as a DNN is irrelevant because of the lack of data. The simplest reasonable 392

’closure’ one can consider in this context is a linear dependency of each bℓ(ν(µ)) with ν(µ), 393

meaning bℓ(ν(µ)) chosen in the form 394

bℓ(ν(µ)) =
K

∑
m=1

aℓm νm(µ). (12)

The ∆κ model proposed in this paper is 395

∆κ(., µ) ≈
K

∑
ℓ=1

K

∑
m=1

aℓm νm(µ)ψℓ(.) (13)

with a constant coefficient matrix A = (aℓm)ℓ,m ∈ RK×K. The matrix has to be identified 396

to fit the available data. This can be done for example from the available sampled data 397

{µ1, ..., µNs} by solving the least square problem 398

min
A∈RK×K

1
2

Ns

∑
k=1

∥∥∥∥∥∆κ(., µk)−
K

∑
ℓ=1

K

∑
m=1

aℓm νm(µ
k)ψℓ(.)

∥∥∥∥∥
2

L2(Scp)

. (14)

From the FE discretized point of view, the minimization problem (14) reads 399

min
A∈RK×K

1
2
∥U − PAR∥ 2

F

with R =
[
ν(µ1), ..., ν(µNs)

]
∈ RK×Ns . The first order optimality conditions give the 400

solution 401

A = PT︸︷︷︸
K×Ncp

U︸︷︷︸
Ncp×Ns

RT︸︷︷︸
Ns×K

(RRT)−1︸ ︷︷ ︸
K×K

assuming that R has a maximal rank so that RRT is invertible. In the case K = Ns and 402

under the maximal rank assumption, using the QR factorization U = PT, the solution 403

simply writes 404

A = PTUR−1 = TR−1.

The discretized version of (11),(12) is 405

κ(µ) = κre f + PAν(µ), (15)

which is equivalent to 406

κ(µ) = κre f +
K

∑
ℓ=1

K

∑
m=1

aℓmνm(µ)ψℓ. (16)

Finally, the surface drag is computed from the formula (7): 407

Cd A(µ) =
1

1
2 ρ0u2

0

∫∫
Scp

κ(., µ) dSy. (17)

In practice, the integral is approximated using a FE quadrature on each each FE element 408

over the cutting plane. We have Cd A(µ) = ⟨w, κ(µ)⟩ for some vector w. 409

2.5. Online stage: drag force evaluation 410

For a new parameter vector µ, the deformed surface is created and is discretized by a 411

triangular mesh. If the mesh does not share the same connectivity as the reference shape 412

mesh, a mesh matching method such as transport optimal (Appendix A) has to be used. 413
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The set of shape feature ν(µ) is computed by formula (6). Then the force density κ(µ) 414

is computed from Equation (16). Finally, the drag Cd A(µ) is assessed by means of the 415

formula (17). 416

2.6. Summary 417

The offline and online stages of the proposed surrogate model are summarized below 418

in Algorithms 1 and 2 below.

Algorithm 1 ROM far field Offline Phase - Learning phase for a set of Ns training shapes
{S(., µk)}k=1,...,Ns with FOM results

Require: Reference geometry Sre f and deformed shapes {S(., µk)}k=1,...,Ns

Ensure: Q , ψ , A
1: Discretize shapes by a mesh of Nv vertices

2: Compute snapshot matrix of displacements D =
[
δµ1 , δµ2 , ..., δµNs

]
3: Compute orthogonal reduced basis Q = [q1, ..., qK] by SVD analysis or QR factorization

of D
4: Compute new global shape descriptors ν(µk) = QTδk

µ

5: Compute snapshot matrix of field variations U =
[
∆κµ1 , ∆κµ2 , ..., ∆κµNs

]
6: Extract orthogonal modes ψ by SVD analysis or QR factorization of U
7: Compute coefficient matrix A

419

Algorithm 2 ROM Farfield Online Phase - Prediction of a new ’query’ shape S(., µ), µ ∈ M

Require: Reference geometry Sre f , deformed geometry S(., µ), farfield modes ψ, coeffi-
cients matrix A, shape basis matrix Q, reference force density κre f

Ensure: Aerodynamic drag coefficient Cd A(µ)

1: Discretize deformed shape by a mesh of Nv vertices
2: Compute discrete displacement field δµ

3: Compute shape descriptor ν(µ) = QTδµ

4: Compute variation field κ(µ) = κre f + ∑K
ℓ=1 ∑K

m=1 aℓmνm(µ)ψℓ

5: Compute drag coefficient Cd A

3. Numerical experiments, results and discussion 420

3.1. High Fidelity simulation 421

A CFD numerical simulation is carried out using the commercial solver ProLB, based 422

on the Lattice Boltzmann Method (LBM). The LBM is a numerical approach to model 423

macroscopic fluid dynamics by simulating the microscopic particle dynamics and their 424

collisions on a discretized lattice grid. This method well handles complex geometries. 425

To deal with turbulent flows near the vehicle, a LES model along with a LBM-based 426

SGS (subgrid Smagorinski) model is used. The computational domain and boundary 427

conditions are set to accurately represent a realistic wind tunnel setup. The domain is set 428

48.96 m long, 29.4 m high and 46.4 m wide. At the inlet of the flow domain, a realistic 429

upstream velocity u0 = 45.88 m.s−1 is used, corresponding to a Reynolds number of 430

order 107. The atmospheric pressure p0 = 101, 325 Pa is imposed at the outlet. On all other 431

bounding surfaces of the domain, a friction-less boundary condition is employed. Finally, 432

on vehicle surfaces, a no-slip boundary condition is imposed. The computational domain 433

is composed of eight successive Adaptative Mesh Refinement (AMR) resolution domains, 434

corresponding to refinements of the LBM mesh. The finest resolution is of the order of 435
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2 mm, near the vehicle to ensure accurate flow results. The Boltzmann equation is solved 436

over the LBM mesh for a total of 520,000 iterations, which corresponds to 2.5 seconds of 437

air flow simulation. This high number of iterations is set to ensure that the flow reaches 438

a steady state. Pressure and velocity fields are captured on the lattice grid for the steady 439

state iterations. The simulation takes approximately 7 hours on a cluster of 900 CPUs to 440

complete. 441

Inlet
u0 = 45.833 m.s−1

Outlet
p0 = 101325 Pa

(a)

Ceiling and walls
- Friction-less

Floor
- Friction-less
- No-slipVehicle surface

- No-slip

(b)

Figure 2. Boundary conditions CFD simulation 3D vehicle. (a) Boundary Conditions on inlet and
outlet surfaces of wind tunnel. (b) Boundary conditions on wind tunnel ceiling, floor, lateral walls
and vehicle

3.2. Simplified geometry "S2A" 442

The surrogate model has been tested on a simplified industrial car design, which 443

is used in the Renault wind tunnel facility for aerodynamic calibration. This design 444

has the essential structures of a real vehicle while having enough simplicity to reduce 445

computational complexity. It is made of multiple detailed structures: a superstructure, an 446

underbody, front and rear axles, tires, and rims. The vehicle geometry is simplified with no 447

external appendices (such as external mirrors) or engine compartments. Parametrization of 448

the car shape involves three independent parameters, i.e. µ = (µ1, µ2, µ3), affecting only 449

the vehicle body superstructure. The first parameter, µ1, corresponds to a translation along 450

the ŷ axis, simulating a narrowing of the rear bumper and constrained within the range 451

of [−20 mm, 20 mm]. The second parameter, µ2, represents a translation along the x̂ axis 452

to model an extension of the vehicle’s roof, with a range of [−50 mm, 50 mm]. Lastly, the 453

third parameter, µ3, denotes a rotation around the ŷ axis of the rear underbody, constrained 454

within [−5◦, 5◦]. The specific morphing area impacted by these parameters is illustrated 455

in Figure 3. The initial geometry is represented by a FE mesh composed of Nv = 556 354 456

nodes. 457
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Figure 3. Presentation of the S2A geometry involving three independent parameters. The variable
surface part of the geometry is drawn in magenta.

3.3. Data generation and preprocessing 458

A total of 30 deformed shapes are generated from the initial geometry, employing a 459

maxi-min space-filling strategy on the CAD parameter µ (Figure 8). CFD simulations are 460

performed for each shapes, and the high-fidelity results provide detailed information on the 461

flow field around the vehicles and the corresponding drag coefficients (Table 1). The mean 462

dimensionless surface drag of this dataset is 0.9952 with a standard deviation of 0.0127. 463

The low standard deviation, compared to the mean, suggests that the drag coefficients 464

are relatively consistent across the dataset since shapes variations are within a maximum 465

range of 50 mm. However, in a design optimization study, even a small reduction in drag 466

of 0.02 m2, is important as it could lead to a reduction of 1 gram of CO2 consumption when 467

proceeding to the Worldwide harmonized Light vehicles Test Procedure (WLTP) cycle. 468

Figure 4. Maximin-type space-filling on CAD parameter vector µ ∈ R3.
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Table 1. Table of dimensionless drag results (the surface drag of the reference shape is 1). The range
is [0.9632, 1.0168].

Shape ID Cd A
Cd Are f Set Shape ID Cd A

Cd Are f Set

1 1.0000 Reference 17 1.0075 Training
2 0.9820 Validation 18 0.9974 Validation
3 0.9939 Validation 19 1.0168 Training
4 0.9836 Validation 20 0.9632 Training
5 1.0011 Validation 21 0.9616 Training
6 1.0046 Validation 22 0.9987 Validation
7 0.9994 Validation 23 0.9761 Validation
8 0.9831 Validation 24 0.9790 Validation
9 1.0088 Validation 25 0.9952 Validation

10 0.9921 Validation 26 0.9858 Validation
11 1.0054 Validation 27 0.9712 Validation
12 0.9844 Validation 28 0.9943 Validation
13 0.9785 Validation 29 1.0101 Validation
14 0.9955 Validation 30 1.0043 Validation
15 0.9969 Validation 31 0.9775 Validation
16 1.0100 Validation

In this test case, each deformed geometry is independently meshed, therefore the 469

meshes do not share the same mesh topology as the reference shape. As explained in 470

Appendix A, an optimal transport strategy is used to make the mapping and mesh corre- 471

spondence. The optimal transport problem was solved by using the reference open-source 472

Python library Geomloss [29]. 473

3.4. Model performance 474

The performance of the model with respect to the number of input data points and 475

their distribution is evaluated. To achieve this, cross-validation is performed using different 476

numbers of folds. The number of folds, denoted by N f , determines how the data is split 477

for training and validation. The dataset is divided into N f subsets of approximately equal 478

size. Usually in cross-validation, for each round, one subset is used for validation while 479

the remaining N f − 1 subsets are used for training. However in this study, as we aim at 480

keeping a low number of training data, the typical approach is reversed : one fold is used 481

ford training and the remaining folds are used for validation. This allow to asses how 482

well the model performs when it is trained on a small dataset. To ensure robustness of 483

cross-validation results, multiple cross-validation runs are performed for each choice of 484

fold number N f . In each run, a different random seed is used to shuffle the data, resulting 485

in different splits. This is done to minimize the impact of any particular split that may 486

be suboptimal for the model. After performing these cross-validation runs, the results 487

are averaged to give an estimate of the model’s performance. This approach is especially 488

important when the number of folds is small, as the randomness in splitting the data can 489

sometimes lead to unfavorable training datasets, potentially leading to misleading perfor- 490

mance evaluations. By repeating the process with different splits, the model’s evaluation 491

becomes more accurate and less dependent on any single data split. 492

Cross-validation is performed with the number of folds, N f , varying between 2 and 493

8. This results in training subsets containing between 15 samples (for N f = 15) and 3 or 494

4 samples (for N f = 8). For each number of folds, a total of 10 cross-validation runs are 495

executed. 496

First, the performance of the low-dimensional reparametrization of the vehicle geome- 497

try is evaluated for each cross-validation fold. To do so, the Mean Squared Error (MSE), 498

interpreted here as the L2 projection error, is computed for each shape in the validation 499

datasets. This error measures how well the geometry of the vehicle is reconstructed from 500

the reduced parameter space. The MSE is then averaged across all validation shapes for 501

each fold. As shown in Figure 5 the average MSE tends to increase as the number of folds 502
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increases as there is less data for training. However, the MSE values remain relatively low 503

(less than 0.5 mm), even with a high number of folds. This demonstrates the effectiveness 504

of the reparametrization in capturing the geometric variations of the vehicle shapes, even 505

with limited training data. 506

(a)

Figure 5. Averaged Mean Squared Error of shape reconstruction depending on the number of folds
in cross-validation.

Then, to evaluate the performance of the model in predicting the drag coefficient for 507

new shapes, several metrics are computed during cross-validation. First, the maximal and 508

mean absolute error on Cd A prediction are assessed. Figure 6(a) show the results for the 509

different folds. Although the error tends to increase slightly with the number of folds, 510

the overall error remains well within an acceptable threshold of 3 %, indicating robust 511

performance of the model with limited input data. The Pearson coefficient is computed to 512

quantify the linear correlation between the predicted and high fidelity drag values (Figure 513

6(b)). The model consistently achieved high Pearson correlation coefficients across all folds. 514

Since the model is intended to serve as a decision support tool during design optimizing 515

process, it is important that the ranking of shapes regarding the drag is preserved. The 516

model’s ability to maintain the correct ranking is then evaluated using the Kendall rank 517

correlation coefficient [30]. The Kendall coefficient is defined by the following equation 518

[33]: 519

τ =
nc − nd

n
, (18)

with nc the number of concordant pairs, nd the number of discordant pairs and n the total 520

number of pairs. A concordant pair is pair of observation where the predicted and high 521

fidelity values have the same relative ordering. So, if one shape has a higher predicted 522

drag value than another, and the actual drag values follow the same order, the pair is 523

considered concordant. On the other hand a discordant pair is when the relative ordering is 524

not preserved by the prediction. However this definition of discordant pairs can be to strict 525

for aerodynamic studies. In some cases, pairs are considered discordant when the predicted 526

and actual rankings are inverted, even though the difference in drag values between the 527

configurations is very small. In such cases, the small deltas may not significantly affect 528

the overall ranking for design studies. Therefore it would be more appropriate to classify 529

these pair as concordant. A relaxed methodology is introduced to take into account this 530

threshold. It introduces a threshold to account for minor prediction errors, allowing pairs 531

with small simulated delta to remain concordant if the predicted delta is similarly close. 532

For larger difference in drag, a more relaxed threshold is used. In the following analysis 533

two variants of the relaxed Kendall coefficient are used, to assess the model ranking 534

performance with different tolerance level. The first tolerance level allows a higher margin 535

of error in the drag prediction, representing the maximum value for the prediction to be 536

considered acceptable.The second tolerance level is stricter, requiring a smaller margin of 537

error to classify the prediction as accurate. These two variants will be referred to as Relaxed 538
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Kendall Acceptable and Relaxed Kendall Accurate. The tolerance for the Relaxed Kendall 539

Acceptable coefficient is defined as: 540

thresholdacceptable =

{
|∆Cd A|+ |∆Cd A|

5 + 0.009 if |∆Cd A| > 0.005
|∆Cd A|+ 0.01 otherwise

(19)

For the Relaxed Kendall Accurate coefficient it is defined as: 541

thresholdaccurate =

{
|∆Cd A|+ |∆Cd A|

5 + 0.003 if ∆|Cd A| > 0.01
|∆Cd A|+ 0.005 otherwise

(20)

Where |∆Cd A| is the absolute drag difference between two configurations. A predicted 542

drag difference ˜∆Cd A is classified as concordant if it as the same sign as ∆CdA or if: 543

• | ˜∆Cd A| ≤ thresholdaccurate for the Relaxed Kendall Accurate coefficient, or 544

• | ˜∆Cd A| ≤ thresholdacceptable for the Relaxed Kendall Acceptable coefficient. 545

The values of the Kendall coefficients depending on the number of folds are presented 546

in Figure 6(b). The Kendall rank coefficient computed across all folds is in a range of 547

0.575 to 0.59. This low value is due to many pairs being classified as discordant with 548

the strict initial definition of concordance and discordance. However, when the Relaxed 549

Kendall is applied, using the modified definitions that account for minor prediction errors, 550

a significant improvement in the score is observed. Indeed across all folds the Relaxed 551

Kendall Acceptable and Relaxed Kendall Accurate are in a respective range of 0.93 to 0.94 552

and 0.86 to 0.89. 553

(a) (b)

Figure 6. (a) Mean and max absolute relative error on Cd A depending on the number of folds for
cross-validation. (b) Correlation scores depending on the number of folds for cross-validation

The total time of the modeling process is measured, including the three main phases: 554

data pre-processing, model training, and inference. The pre-processing of the data consists 555

in mesh correspondence by using optimal transport. During this step, the computational 556

time mainly depends on the number of triangular elements representing the shape. This 557

step can be skipped if the mesh is morphed simultaneously with the geometry. When using 558

the Geomloss library, optimal transport for a shape with Nv = 556354 elements takes 559

approximately 15 minutes on a system with 40 CPUs. The training time depends on the 560

number of input samples, which is linked to the number of folds in cross-validation. Figure 561

7 illustrates how the training time varies with different numbers of folds. As the number of 562

folds increases, the training time decreases because the model becomes easier to solve with 563

fewer data points in each training subset. The training of the model with 15 shapes (2 folds) 564

takes approximately 10 seconds, while the training time drops to under 5 seconds when 565

only 3-4 shapes (8 folds) are used in the training set. For the inference of a new shape, once 566

the new geometry is generated using a morphing tool, no additional pre-processing via 567

optimal transport is required if the mesh shares the same topology as the reference shape. 568
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In this case, the inference time is extremely short, taking less than 1 second to obtain the 569

results on the cutting plane and the drag force. 570

Figure 7. Training and inference time depending on the number of folds for cross-validation

Cross-validation experiment has demonstrated that, with a small number of folds, 571

resulting in a large amount of input data, the performance of the model increases. However, 572

even with limited training data, the performance of the model is relatively high. Therefore, 573

it is advantageous to work with the smallest number of input data points, as this reduces 574

the number of CFD simulations required. 575

3.5. Surrogate model construction 576

When working with a small input dataset, the choice of the training input data is very 577

important to achieve a good accuracy. Therefore, in the following analysis four deformed 578

shapes are chosen wisely (ID number 17, 19, 20, and 21 in Table 1) to train the model. The 579

Ns = 4 input samples are selected to ensure a minimal comprehensive coverage of the 580

exploration space of global parameters µ. Additionally the initial reference shape (shape ID 581

1) is included for computation of the shape variations. All the other shapes in the dataset 582

serve as the validation set. The distribution of the selected shapes can be seen in Figure 8. 583

μ3 ( ∘)

∘4 ∘2 0 2 4

μ 1
 (m

m)

∘20
∘10

0
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20

μ 2
 (m

m
)

∘40
∘20
0
20
40

Validation
Training
Reference

Figure 8. Maximin space-filling on CAD parameter µ ∈ R3. Orange dots are the Ns = 4 training
shapes, the green dot is the reference geometry µ = 0 and the remaining blue dots are used for the
validation set.
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3.5.1. Shape encoding 584

Once the mesh mapping is done, shape variation fields δµ ∈ R3Nv of the training 585

geometries are used as shape variation basis. For information, the norm of the deformation 586

field is shown in Figure 10 for two shapes of the training set. The training shapes cover 587

both positive and negative deformations for parameters µ1, µ2 and µ3, ensuring a faithful 588

representation of the exploration space. 589

(a) Shape deformation field norm for training shape ID
number 19 - Isometric view

(b) Shape deformation field norm for training shape ID
number 19 - YZ plane view

Figure 9. Shape deformation field norm for training shape ID number 19

(a) Shape deformation field norm for training shape ID
number 21 - Isometric view

(b) Shape deformation field norm for training shape ID
number 21 - YZ plane view

Figure 10. Shape deformation field norm for training shape ID number 21

The field of δµ is used to compute new shape basis qℓ and resulting shape coefficients 590

ν(µ).The relative L2 error projection on the given basis is plotted in Figure 11 for the 591

validation shapes. The overall error is quite small, with a maximum error of 0.002 m for all 592

shapes in the validation database. 593

This new basis enables good reconstruction of the shape, indicating that it effectively 594

captures the essential features and variations present in the original data. 595
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Figure 11. Relative L2 error projection on the qℓ POD basis for each shape of the database.

3.5.2. Computation of the flow field modes on a wake cutting plane 596

The snapshot matrix U of ∆κ fields is built from the FOM results. These results are 597

obtained on a cutting plane located at a distance of 0.2 m behind the car (Figure 12(a)), 598

discretized with Ncp = 6930 nodes. It is worth noting that the flow on a wake plane close 599

to the vehicle is turbulent with large unsteady eddies and lacks the stabilization observed 600

in planes situated farther away. Therefore, the influence of shape variations becomes more 601

pronounced and discriminating on proximity planes, providing valuable insights of the 602

aerodynamic behavior of the vehicle. As shown in Figure 12(b), 12(c) and 12(d) the flow 603

field for the training shapes have different turbulent patterns. This difference will allow the 604

model to learn a broader range of physical behavior, to enhance its ability of generalization 605

for a better predictive performance. 606
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Plane at m Plane at m

(a) Cutting planes of study in the wake, at respective locations 0.2 m and 3.2 m from the vehicle.

(b) Delta fields ∆κ(µ) for shape ID
17 on the wake plane located at 0.2 m
from the vehicle.

(c) Delta fields ∆κ(µ) for shape ID 19
on the wake plane located at 0.2 m
from the vehicle.

(d) Delta fields ∆κ(µ) for shape ID
20 on the wake plane located at 0.2 m
from the vehicle.

Figure 12. Flow field on cutting plane located at 0.2 m from the vehicle

Far field modes, denoted as ψ1, ψ2, ψ3 and ψ4 , are computed and depicted in Fig- 607

ure ??. Unlike Principal Component Analysis (PCA), the first mode resulting from the QR 608

decomposition of U is not a linear combination of the columns of matrix U. This initial 609

mode is the normalized first column of matrix U, as illustrated in Figure 13(a). Then each 610

additional mode is orthogonal to the previous ones, so it captures distinct and independent 611

flow field dynamics. With this approach, each mode provides new insights on the pattern 612

of the flow behavior. 613

(a) (b) (c)

Figure 13. Modes on cutting plane Scp. (a) Contour plot of far-field modes ψ1 (b) Contour plot of
far-field mode ψ2, (b) Contour plot of far-field mode ψ3
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3.6. Surrogate model evaluation 614

Once the reparametrization has been completed and the physical modes are computed, 615

the constant coefficient matrix A is determined, which concludes the model training on the 616

Ns = 4 shapes. The model is then applied to predict the density force κ(µ) on the cutting 617

plane for the deformed shapes in the validation dataset. Figure 14 compares the flow field 618

from the high-fidelity simulation with the predicted one from the surrogate model for one 619

arbitrary shape from the validation set (Shape ID 7). The model successfully captures the 620

overall flow patterns, confirming that the surrogate model accurately represents the fluid 621

behavior. However, as shown in Figure 14(c) errors are observed in some turbulent regions, 622

where the model struggles to capture finer details. 623

(a) (b) (c)

Figure 14. Prediction results of the flow field (a) Simulated flow field (b) Predicted flow field (c)
Absolute relative error

The MSE of the flow field predictions is given in Figure 15 for the different shapes 624

of the validation dataset. The MSE value is relatively low for all configurations with an 625

average MSE of 0.38, indicating a strong overall predictive performance of the model. 626

(a)

Figure 15. Mean Squared Error of the flow field predictions for various shapes in the validation
dataset.

The predicted flow field density κ(µ) is integrated over the cutting plane by the mean 627

of Equation 17 to obtain the drag coefficient of each deformed shape. The accuracy of 628

the surrogate model is assessed by comparing the predicted drag coefficient against those 629

obtained from FOM results. As shown by the correlation plot in Figure 16(a), there is a 630

strong positive correlation between predicted and real drag coefficients, with a Pearson 631

coefficient of 0.86. All predicted coefficients lie in the admissible threshold error range of 632
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0-3 % (green dotted line), with a maximal error of 1.59 %. However, it’s important to note 633

that the order is not perfectly preserved for some geometries, indicating that the model 634

captures the overall trend but may struggle with specific variations. To further examine 635

these nuanced behaviors at particular points, the correlation plot of delta drag between each 636

configuration is presented in Figure 16(b). This plot reveals a positive correlation between 637

predicted and real delta. Most points are located within the threshold for acceptable (red 638

dotted line) and accurate (green dotted line) prediction. More than 91% of delta between 639

configurations are predicted accurately with only 2% of prediction outside the acceptable 640

range. Moreover, the associated Kendall coefficients for this model are as follows : 0.67 for 641

the standard Kendall coefficient, 0.95 for the Relaxed Kendall Accurate and 0.99 for the 642

Relaxed Kendall Acceptable . Those different results demonstrate the model’s excellent 643

effectiveness in predicting drag coefficient variations. 644

(a) (b)

Figure 16. Prediction results (a) Correlation plot of Cd A. (b) Correlation plot of delta of ∆Cd A and its
distribution.

4. Concluding remarks and perspectives 645

In this paper, we presented a novel ML-based surrogate model for predicting drag 646

forces on shape-parametrized cars, addressing the constraints of limited high-fidelity CFD 647

simulations. The model features low-dimensional reparametrization of vehicle geometry, 648

integration of physical fields to enhance data information without extra CFD computations, 649

reliance on physical drag formulas, and accuracy for small geometry variations. 650

The surrogate model showed robust predictive capabilities across various 3D deformed 651

geometries, enabling rapid assessment of minor shape variations during optimization. The 652

model achieves typical mean square errors of order 2 % for drag prediction with only 653

few evaluations. While occasional challenges in preserving variation order were noted, 654

the consistently low maximal error underscores its reliability for decision support and 655

optimization studies. 656

657

Future work aims to enhance the model by incorporating more physical field modes 658

and exploring different deformation fields for reparametrization. Additionally, refining the 659

Design of Experiment selection could further optimize the methodology. 660
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Abbreviations 673

The following abbreviations are used in this manuscript: 674

CFD - Computational Fluid Dynamics 675

LBM - Lattice Boltzmann Method 676

POD - Principal Orthogonal Decomposition 677

RSM - Response Surface Model 678

HF - High-fidelity (computation) 679

AI - Artificial Intelligence 680

NN - Neural Network 681

LLE - Locally Linear Embedding 682

CNN - Convolutional Neural Network 683

SUV - Sport Utility Vehicle 684

Cd A - Drag coefficient times frontal area 685

LES - Large Eddy Simulation 686

SGS - Subgrid Scale 687

Re - Reynolds number 688

fx - Drag force component in the x-direction 689

p - Static pressure 690

p0 - Infinite unperturbed pressure 691

x̂ - Unit vector in the x-direction 692

τ - Viscous stress tensor 693

ν - Kinematic viscosity 694

∇u - Velocity gradient tensor 695

Sv - Vehicle’s surface 696

t - Tangential unit vector 697

Scp - Cutting plane in the wake of the vehicle 698

ρ - Fluid density 699

u0 - Free stream velocity 700

ux - Velocity component in the x-direction 701

CAD - Computer-Aided Design 702

µ - Shape parameter vector 703

M - Domain of admissible shape parameters 704

705

Appendix A. Mesh Matching 706

Appendix A.1. 707

If the initial geometry S(., µre f ) and the deformed geometry S(., µ) do not share the 708

same mesh topology, as in the case of remeshing, establishing a correspondence between 709

the two meshes is necessary. One approach to achieve this, is to employ optimal transport 710

between the nodes or elements of the two meshes. In this context, the initial geometry 711

S(., µre f ) and the deformed one S(., µ) are treated as point clouds of elements centroids, 712

each consisting of Nv and Nµ
v points, respectively. The centroids are noted as (cj)j=1...M for 713

S(., µre f ) and (cµ
i )i=1...Mµ for S(., µ), with each point assigned a mass mj and mµ

i , respectively. 714

By default, point clouds are conceptualized as distributions of uniform mass where mj =
1
M 715

and mµ
i = 1

Mµ . 716

The transport plan πµ between S(., µ) and S(., µre f ) is a matrix of dimensions Mµ × M, 717

where mij represents the amount of mass transported from the initial point cµ
i ∈ S(., µ) 718

to cj ∈ S(., µre f ) (see Figure A1). The definition of the transport plan is formulated to 719

minimize a transport cost, which is given by: 720

cost(πµ) = ∑
ij

mij||cj − cµ
i ||

2 (A1)

Therefore each point cj ∈ S(., µre f ) is connected to one or multiple points cµ
i ∈ S(., µre f ) 721

with a specified weight mij if mij > 0. 722
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Figure A1. Transport plan towards a reference point cj of the reference cloud. The mij represents the
mass transport from point cµ

i to point cj
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