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Abstract

We model the hydrodynamic interaction of two equal size capsules in simple shear
flow. The capsules may have different mechanical membrane properties. The results
are analyzed in terms of a macro scale model of capsule membrane damage. We show
how the interaction between two capsules with a membrane rigidity mismatch may
lead to damage of the more deformable capsule even when the base flow strength
is below the damage threshold of both capsules. We provide charts of the peak
deformation energy density in the two membranes as a function of the flow strength
and the ratio of the elastic rigidity of the two capsules. Given a damage criterion,
those charts can be used to determine when flow-induced damage will occur in a
suspension of capsules with a distribution of mechanical properties.

Keywords: capsule interaction, damage criterion, finite element method,
boundary integral method

1. Introduction

Microcapsules, consisting of an internal medium enclosed in a thin elastic shell,
are used for many industrial and medical applications to protect the internal cargo
during transport until delivery. Their advantage, compared to lipid vesicles or lipo-
somes, is that the polymerized membrane brings resistance to mechanical stresses
even under fairly large deformation. Nevertheless a single capsule will eventually
burst when it is subjected to an external stress that exceeds a critical value (Barthès-
Biesel, 1991; Chang and Olbricht, 1993a,b; Walter et al., 2000; Rehage et al., 2002;
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Carin et al., 2003; Risso and Carin, 2004; Koleva and Rehage, 2012; de Loubens
et al., 2014; Ghaemi et al., 2016; Le Goff et al., 2017; Wang et al., 2021; Leopércio
et al., 2021). Consequently, when capsules are suspended in a liquid carrier where
they are subjected to hydrodynamic stresses, it is important to ensure that they are
not damaged during transport. The base flow shear stress should thus be below the
nominal limit of single capsule break-up.

But a complexity comes from the fact that capsule interactions modify the stress
distribution. In semi-dilute suspensions, pair interactions between particles are the
dominant effect (Guazzelli and Morris, 2012). The strongest interaction effects oc-
cur when the two capsules have their centers in the same shear plane on two nearby
streamlines, corresponding to almost head on collision. In this situation, the two
capsules are displaced along the velocity gradient direction and overpass each other:
this is the so-called leap frog motion. At the peak of interaction, the shape distor-
tion of the capsules goes through a maximum value before returning to its nominal
value corresponding to the base flow deforming effect. After crossing, the separa-
tion between the capsule centers trajectories is larger than it was initially: it is this
phenomenon which leads to self diffusion. Self diffusion effect has been extensively
studied and is now well documented for two identical spherical elastic capsules sus-
pended in a simple shear flow, and flowing in the same shear plane (Lac et al., 2007;
Doddi and Bagchi, 2008), two vesicles (Kantsler et al., 2008; Gires et al., 2014) or
two red blood cells (Omori et al., 2013). The self diffusion phenomenon has also
been observed when the capsules flow in a polymeric liquid (Pranay et al., 2010).
The case of two capsules with the same size but different membrane elastic proper-
ties has been considered by Singh and Sarkar (2015) who found that the trajectory
shift was mildly influenced by the elastic moduli ratio. When two identical capsules
are in different shear planes, the interaction and the trajectory shift decrease as the
distance between the capsules increases (Lac and Barthès-Biesel, 2008; Gires et al.,
2014). Furthermore, in this configuration, the two capsules may undergo a minuet
motion where trajectory reversal and multiple interactions occur (Hu et al., 2020).

Most existing studies have characterized the mechanical state of the deformed
capsule by means of an equivalent Taylor deformation parameterD = (LM−Lm)/(LM+
Lm) where LM and Lm are the maximum and minimum lengths of the capsule de-
formed profile in the shear plane. The issue is that the capsule shapes during in-
teraction are far from being ellipsoidal, which strongly limits the relevance of using
such a deformation index. It is thus impossible to predict whether the capsule will
be damaged by the interaction process from the value of D.

It is the purpose of this paper to analyze the stresses in the membrane of the
capsule during pair interaction and verify if the extra transient deformation may
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lead to damage of the membrane and ultimate loss of the enclosed material. In
order to do so, we model the hydrodynamic interaction of two capsules with equal
size but eventual differences in the mechanical membrane properties and analyze the
results in terms of the recent macro scale model of capsule membrane damage in
simple shear flow, developed by Grandmaison et al. (2021). This model is based on
the theory of continuum damage mechanics: when the elastic energy density in the
membrane exceeds a threshold value, damage in the membrane develops until break
up occurs. We show how the interaction between two capsules with a membrane
rigidity mismatch may lead to damage of the more deformable capsule even when
the base flow strength is below the damage threshold of both capsules. We provide
charts of the peak deformation energy density in the two membranes as a function
of the flow strength and the ratio of the elastic rigidity of the two capsules. Given a
damage criterion, those charts can be used to determine when flow induced damage
will occur in the suspension of capsules. Consequently, those results can be used
to determine safe flow conditions for a suspension of capsules or to sort capsules
according to their membrane resistance.

In section 2, we present the hydrodynamic problem and the numerical method
used to solve it. The dynamics of capsule crossing and the influence of the flow
parameters are developed in section 3. The conditions for potential mechanical
damage in one capsule membrane are analyzed in section 4. In section 5, we conclude
and discuss how our results can be used in practice to either protect all the capsules
or sort out the more deformable ones.

2. Problem statement and numerical method

2.1. Problem description

We consider two spherical capsules Ci (i = 1, 2) with identical radii a but poten-
tially different mechanical properties. The capsule walls are assumed to be infinitely
thin sheets of an incompressible isotropic neo-Hookean material. Their elastic be-
havior thus follows a membrane constitutive law with surface shear moduli Gsi,
surface dilatation modulus 3Gsi and negligible bending resistance (Barthès-Biesel,
2016). The two capsules are filled with a Newtonian liquid (dynamic viscosity µ
and density ρ). They are freely suspended in another Newtonian liquid (dynamic
viscosity µ and density ρ), subjected to a steady simple shear flow with shear rate
γ̇. We use non-dimensional quantities throughout, with characteristic dimensions a
for lengths, 1/γ̇ for time, µγ̇ for viscous stress and Gsi for elastic tensions (force per
unit arc length) in the membrane of capsule Ci, respectively. We assume that the
flow Reynolds number ργ̇a2/µ is very small, so that Stokes flow conditions prevail.
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The undisturbed velocity field v∞ is then

v∞ = y ex, (1)

in the laboratory Cartesian reference frame (O, ex, ey, ez).
At time t = 0, the capsules are spherical and their centres of mass are positioned

in the same shear plane, symmetrically with respect to the origin O of the labo-
ratory reference frame (Fig 1). The objective of the numerical model is to follow
the time evolution of the positions of the capsule centroids O1 and O2, with coor-
dinates {xi(t), yi(t), zi(t), i = 1, 2}, as well as the instantaneous deformation of each
capsule. Note that for symmetry reasons in Stokes flow, the capsules remain in the
initial shear plane, so that zi(t) = 0: from now on, this parameter will be ignored.
Typically, the capsules are first convected towards each other by the flow, eventually
overpass and strongly interact and are finally convected away from each other. The
computation is stopped when the two capsules are far enough to have regained the
deformed shape they would take when alone in the shear flow.

The distance between the two centroids is defined by

∆x(t) = x2(t)− x1(t), ∆y(t) = y2(t)− y1(t) (2)

The deformation and flow dynamics are governed by two non-dimensional pa-
rameters, such as the capillary numbers Cai = µγ̇a/Gsi, which compare the viscous
to the elastic forces for each capsule. It is also convenient to introduce the ratio of
shear moduli β = Gs2/Gs1 = Ca1/Ca2. When β < 1, capsule C1 is less deformable
than capsule C2 under identical flow conditions.

2.2. Fluid-structure interaction code

To solve the fluid-structure interaction problem, we do a Lagrangian tracking
of the position of the capsule surfaces and couple iteratively the boundary integral
method (BIM) solving for the fluid flows and the finite element method (FEM)
solving for the membrane equilibrium (Walter et al., 2010). This method is similar to
the one developed by C. Pozrikidis’ group where BIM is coupled to the local solution
of the membrane equilibrium equations on each membrane element (Pozrikidis, 1992;
Ramanujan and Pozrikidis, 1998). To account for the interaction between the two
capsules, we adapt the strategy developed by Hu et al. (2020) for two identical
capsules.

4



Figure 1: The two capsules are initially positioned in the same shear plane (ex, ey), with symmet-
rical positions with respect to the center of the laboratory reference frame.

2.2.1. Fluid flow

The motion of the capsules internal and external fluids is governed by the quasi-
steady Stokes equations:

∇ · v(x, t) = 0, ∇ · σ(x, t) = 0. (3)

where v(x, t) is the velocity field and σ(x, t) is the fluid stress tensor given by
Newton’s law. Those equations can be put in an integral form that relates the
velocity of the points of the capsule surfaces to the tractions on the membrane, at
each time t:

∀ξ ∈ Si(t), vi(ξ, t) = v∞(ξ) −
1

8πCa1

∫

S1(t)

J(ξ, ζ) · q1(ζ, t) dS(ζ)

−
1

8πCa2

∫

S2(t)

J(ξ, ζ) · q2(ζ, t) dS(ζ), (4)

where Si(t) is the deformed surface of capsule Ci and qi(ζ, t) the membrane load on
capsule Ci, at time t. The free space Green’s function J is defined as:

J(ξ, ζ) =
I

‖ξ − ζ‖
+

(ξ − ζ)⊗ (ξ − ζ)

‖ξ − ζ‖3
, (5)

with I the identity tensor.
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Dynamic boundary conditions link the membrane load to the viscous stress jump
[σi] across the membrane of capsule Ci

[σi](ξ, t) · n =
1

Cai
qi(ξ, t), i = 1, 2 (no summation on i) (6)

where n the unit normal vector points outwards.
At a given time, the velocity fields are thus obtained directly using Eq. 4 know-

ing the values of the membrane load qi provided at the previous instant by the solid
solver (see the following subsection). Time t enters the problem through the kine-
matic conditions that relate the membrane velocities vi to the time derivative of the
displacement fields ui:

∀ξ ∈ Si(t), vi(ξ, t) =
∂

∂t
ui(ξ, t), i = 1, 2. (7)

Finally, Eq. 7 is integrated in time using a second-order Runge-Kutta Ralston scheme
to update the displacement fields ui.

2.2.2. Capsule wall mechanics

For both capsules, the thickness of the membrane is assumed to be negligible with
respect to the radius a. As mentioned above, we further assume that the membrane
mechanical properties are governed by a neo-Hookean constitutive law, appropriate
for an infinitely thin sheet of a three-dimensional isotropic volume incompressible
material devoid of bending resistance (see Barthès-Biesel (2016) for details). The
strain energy wi per unit undeformed surface area is then given by:

wi =
1

2

[

λ2
I + λII

2 − 3 +
1

λI
2λII

2

]

, (8)

where λI and λII are the two principal extension ratios of the membranes of each
capsule (for clarity, the subscript corresponding to the capsule has been omitted in
the notations for the extension ratios). Note that wi is scaled with aGsi and thus
corresponds to an intrinsic property of capsule Ci.

At each time t, the membrane equilibrium on the deformed surface of each capsule
reads:

qi + ▽s · Ti = 0, i = 1, 2, (9)

where ▽s denotes the surface gradient operator and Ti the Cauchy tension tensor in
the membrane.
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Equations 9 can be rewritten using the virtual work principle:
∫

Si(t)

ûi · qi dS =

∫

Si(t)

êi : Ti dS, i = 1, 2, (10)

where ûi is an arbitrary kinematically admissible virtual displacement and êi the
corresponding virtual strain tensor. This principle dictates that the virtual work
done by the external loads acting on a deformable body is equal to the virtual
change in internal strain energy. Using the values of ui provided by the fluid solver,
we can compute the deformation, the strain energy wi and the Cauchy tensions Ti

for each capsule membrane. Eq. 10 is then discretized and solved for qi, which is
given to the fluid solver for a new iteration (Walter et al., 2010; Barthès-Biesel et al.,
2010).

2.2.3. Deformation energy and capsule damage

The novel aspect of the present study is that we take into account the possibility
of membrane damage for the capsules. In the framework of the theory of continuum
damage mechanics (CDM), one mechanical property of the capsule membrane mate-
rial is YD, the threshold deformation energy density in the membrane, above which
damage occurs (Kachanov, 1986; Lemaitre and Desmorat, 2005). Correspondingly,
damage is induced as soon as

wm
i (t) ≥ YD, i = 1, 2, (11)

where wm
i (t) is the maximum of the deformation energy density on the membrane

at time t.
Recently Grandmaison et al. (2021) have used the CDM theory to develop a

macro-scale model of the onset and time evolution of damage in the membrane of a
single capsule flowing in a simple shear flow. They provide the relation between YD

and the critical capillary number Cac above which damage occurs. Their maximum
damage criterion is YD = 0.7, which corresponds to Cac = 1. Note that it is difficult
to reach a stable state for Ca ≥ 1 for a capsule with a neo-Hookean membrane (Lac
et al., 2004; Walter et al., 2010; Wang et al., 2021). We have used this same damage
criterion YD = 0.7 throughout the interaction. The effect of the choice of a lower
value of YD is discussed in section 4. Furthermore, since the objective of the present
work is to determine whether capsule damage is induced during crossing but not to
predict its evolution, we have not implemented the full damage evolution model.

In order to assess the relative effect of the hydrodynamic interaction on the cap-
sule deformation, we use as a reference, the situation where the capsules are far
enough from each other and behave as if they were alone in a simple shear flow with
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relative strength Cai. The reference deformed profiles and the value of the maximum
energy density wm

ref are determined as a function of Ca by solving Eq. 4 for only
one capsule (i.e. by integrating over S1(t) and setting to zero the integral over S2(t))
and taking the value at steady state (Fig. 2).

Figure 2: Maximum deformation energy density wm
ref for a single capsule in simple shear flow at

steady state.

2.2.4. Numerical set-up and validation

We discretize the capsules membranes with a triangular mesh and follow the sur-
face nodes position over time. At a given time t, two integral equations corresponding
to Eq. 4 are solved to yield the velocity of the capsule nodes. The velocities are then
integrated (Eq. 7) to yield the displacement field of the nodes at time t+∆t, where
∆t is the time step. The new position of the membrane points is transmitted to the
solid solver. The solution of Eq. 10 yields the value of the load qi at the nodes of the
capsule surfaces. The process is then repeated until a typical total interaction time
tf = 45. The numerical code gives the capsule deformed profiles at each time. Post
treatment of the data allows us to compute the trajectories of the capsule centroids
Oi as well as the time evolution of the elastic energy and stresses in the capsule
membranes.

Since the numerical method is explicit, it is very important to verify the precision
of the capsule centroid trajectories. The numerical code is identical to the one used
by Hu et al. (2020) to study the motion of two identical capsules initially located in
two different shear planes. The only difference is that Hu et al. (2020) had to solve
only one integral equation (Eq. 4), in which the two integrals could be collapsed
into one, since the capsules were identical. In our case, the computation is a little
more complex as we have to solve two integral equations (Eq. 4 for each capsule)
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containing two integrals. The procedure is thus more time consuming. Hu et al.
(2020) have studied the influence of the time step and of the mesh size on the
capsule surface. They concluded that with a surface mesh of 1280 P2 elements and
2562 nodes (with characteristic mesh size O(0.1a)) and a time step ∆t = 5 × 10−4,
the error on the trajectories of the capsule centroids was of order 0.05 at the end of
the interaction, i.e. at a final time of order t ≥ 100. For β = 1 and Ca2 = 0.3, the
capsule centroid trajectories obtained with our code and those obtained by the code
of Hu et al. (2020), differ by less than 0.02. Correspondingly, in all that follows, we
have thus used 1280 P2 elements on each capsule and a time step of 5× 10−4. This
also ensures a precision of order 10−2 for the Taylor deformation of the profiles and
for the deformation energy density w (Walter et al., 2010; Dupont et al., 2015).

a) b)

Figure 3: Influence of the initial position ∆x(0) on the interaction of two different capsules for
β = 1/3, Ca2 = 0.9. (a) Relative trajectory of the capsules centroids; (b) Maximum deformation
energy density of C2 as a function of O2 position. A zoom on the maximum has been inserted at
the bottom left of the figure. The arrows indicate the direction of time evolution.

It is also important to ensure that the results are independent of the initial
condition ∆x(0). To illustrate this point, we consider the case ∆y(0) = 0.5, β = 1/3,
Ca2 = 0.9 and vary ∆x(0) between 2 and 10. Fig. 3a shows that the relative
trajectory of the two capsules centroids are independent of initial conditions for
∆x(0) ≥ 8. The same conclusion is reached if we consider the evolution of the
maximum deformation energy density wm

2 stored in the membrane of C2 (Fig. 3b):
the peak of energy, and thus of deformation, depends significantly on the initial
conditions for ∆x(0) < 4. Note that the same conclusion also applies to the effect of
∆x(0) on the variation of wm

1 along the trajectory of C1. But as w
m
1 is smaller than

wm
2 , the effect is small and thus not shown.
Consequently, in all the present results, great care has been taken to ensure
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∆y(0) ∆x(0)
0.2 10
1 24
2 28

Table 1: Influence of ∆y(0) on the values of ∆x(0) necessary to reach a steady state before capsules
interaction.

that each capsule has reached the reference steady deformation, before it enters the
interaction zone. Specifically, this means that we impose

|wm
i (t)− wm

ref(Cai)|/w
m
ref(Cai) ≤ 0.02 for ∆x = 0.2, i = 1, 2 (12)

With this criterion, we have evaluated the interaction zone to extend over ∆x ∼ 4.
The value of ∆x(0) depends on ∆y(0): the greater ∆y(0), the greater ∆x(0) as shown
in Table 1. This dependency is rather complex and nonlinear. Indeed, as ∆y(0)
increases, the relative velocity of the two capsules increases and the time to reach
the reference state wm

ref necessitates a longer distance along ex: thus ∆x(0) increases
too. On the other hand, as ∆y(0) increases, the strength of the interaction between
the capsules decreases and the length of the interaction zone along ex decreases.

a) b)

Figure 4: Trajectories of the centroids of two interacting capsules for Ca1 = 0.3, ∆y(0) = 0.5 and
∆x(0) = 4: results of Singh and Sarkar (2015) (grey line), present study (full dark line) for (a)
β = 1/3 and (b) 3. We provide additional trajectories for ∆x(0) = 8 (dotted line). The black
arrows indicate the directions of time evolution.

We have compared our results to those obtained by Singh and Sarkar (2015) for
Ca1 = 0.3, ∆x(0) = 4, ∆y(0) = 0.5, in the cases of β = 1/3 (Fig. 4a) and β = 3
(Fig. 4b). We find that the maximum difference on the capsules trajectories is about
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0.08 when β = 1/3 and a little less for β = 3. However, the centroid distances along
the flow direction, chosen by Singh and Sarkar (2015) are too small to obtain results
that are independent of the initial position for β = 1/3. But, if we use ∆x(0) = 8,
the capsule trajectories become independent of the initial conditions. However, the
maximum difference on the trajectories between our results and those of Singh and
Sarkar (2015) increases to 0.1. When β = 3, ∆x(0) = 4 is sufficient for the capsules
to reach a steady state before interacting, but a maximum difference on the capsules
trajectories of 0.05 is still observed.

3. Dynamics of capsule crossing

3.1. Analysis of a typical capsule interaction

We consider the case Ca2 = 0.1 and β = 4 as a typical case. Capsule C1 is then 4
times softer than C2 and is subjected to a baseflow capillary number Ca1 = 0.4 (see
Movie 1). The centroids initial separation is ∆x(0) = 10, ∆y(0) = 0.2. The capsules
are thus convected towards each other. The centroids trajectories in the shear plane
are shown in Fig. 5a. On selected points along the trajectories (corresponding to
given instants t), the deformed profiles of the two capsules are compared to the
reference profiles of the single capsule flowing at the corresponding value of Cai.
When the flow is started and after an initial transient, both capsules deform and
take a tank-treading motion as if they were alone. Consequently, before interaction,
a perfect superposition of the deformed profiles (profiles (i)) with the respective
reference profiles is observed for x1 = −4 and x2 = 4: the presence of the other
capsule has no influence on the dynamics. Furthermore, we can note that the two
capsules have reached a deformed state that is independent of their initial position.

As the capsules become closer, they enter the hydrodynamic interaction zone
and their trajectories deviate from straight lines. As shown in Fig. 5a, this occurs
roughly for x1 > −2 and x2 < 2. The centroids are then displaced along the velocity
gradient direction, so that the two capsules can overpass (recall that their centroids
remain in the shear plane). At the peak of interaction (profiles (j) and (k)), there
is a thin lubrication film between the two capsules (Fig. 5b). The high pressure
exerted in the lubrication film significantly deforms the capsule profiles, which are no
longer ellipsoidal. A curvature inversion may even occur (profiles (j) and (k)). The
presence of this lubrication film prevents contact between the capsules, so that it is
not necessary to introduce a phenomenological repulsion force between the particles.
This phenomenon has also been reported by Lac et al. (2007). Capsule C1 is more
deformed than capsule C2 because of its lower rigidity. As the capsules are convected
away from each other, they regain their respective reference deformed shapes (profiles
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a)

b) (j) (k)

Figure 5: (a) Trajectories of the capsule centroids within the shear plane for Ca2 = 0.1, β = 4,
∆y(0) = 0.2, ∆x(0) = 10 and a total interaction time tf = 60. The black arrows indicate the
direction of time evolution. Capsule profiles in the shear plane are shown (i) before interaction
(t = 6.6), (j) at wM

1
(t = 36.6), (k) at the maximum separation ∆y (t = 37.6), and (l) after

interaction (t = 58.8). The reference profile of a single capsule flowing at the corresponding Ca is
represented with an orange solid line for C1 and a red solid line for C2 in each insert. (b) Three-
dimensional deformed capsules at instant (j) and (k), corresponding to the maximum deformation
of C1 and C2, respectively.

(l)), but their centers are on streamlines that are different from the initial ones: this
is due to the fact the Stokes flows are not reversible when deformable objects are
freely suspended. This irreversible trajectory shift depends on the capsule rigidity
and decreases as Ca increases. As a consequence C2 moves faster than C1: this is
why the trajectories on Fig. 5a do not have the same length whereas they are ended
at the same time tf = 60. This phenomenon creates self diffusion effects in a capsule
suspension.

The variation of the maximum deformation energy density of each capsule during
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Figure 6: Evolution of the maximum energy density wm
i as a function of the centroid position xi

for both capsules (β = 4, Ca2 = 0.1, ∆y(0) = 0.2). Dash lines: reference values wm
ref (Cai). The

arrows indicate the direction of time evolution. The maximum value over time wM
1

is reached at
t = 36.6 corresponding to x1 = −0.38 and x2 = 0.11.

the interaction is shown in Fig. 6. Since capsule C2 is more rigid (and less deformed)
than C1, w

m
1 (t) > wm

2 (t). The values of wm
i (t) are equal to wm

ref(Cai) before and
after the close interaction. During interaction, the membrane maximum energy den-
sities wm

i (t) reach a maximum value wM
i and then decrease in a damped manner

towards the reference value. The close encounter of the two capsules thus creates
transient excess tensions in the capsule membrane, which may lead to damage. This
phenomenon will be studied in detail in section 4.

3.2. Influence of the difference in capsule rigidity β and flow conditions

Keeping the flow conditions for C2 constant (Ca2 = 0.1, ∆y(0) = 0.2, ∆x(0) =
10), we now vary the values of the rigidity ratio β. The corresponding deformed
profiles are shown at the maximum of wm

2 in Fig.7a, for β = 1, 3, 9. Note that the
centers are not simultaneously at x = 0 when β 6= 1: this is due to the difference of
trajectory shift of each capsule, as previously discussed. For β = 1, the two capsules
have identical deformed shapes, as expected. As β increases, the deformability of C1

increases too. During the close interaction, C1 has to flow around the comparatively
rigid capsule C2 and is stretched in the process. This is particularly evident for
β = 9, where C1 is much elongated whereas C2 barely changes shape.

Now, keeping the same deformability ratio (β = 3) and flow conditions (Ca2 =
0.1), we vary the initial capsule separation and consider ∆y(0) = 0.2, 1 and 2 (Fig.
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a)

b)

Figure 7: Capsule profiles in the shear plane for Ca2 = 0.1 for wM
1
. (a) Influence of β for ∆y(0) =

0.2; (b) Influence of ∆y(0) for β = 3.

7b). When the two capsules are nearly on the same initial streamline (∆y(0) =
0.2), the deformation of both capsules differs significantly from the reference (as is
evidenced by the increase in wm

i , shown in Fig 6). This is due to the fact that the
lubrication film between the capsules is thin and large pressure forces thus develop
and deform the capsules. However, as we increase the initial streamline separation,
the lubrication film becomes wider during crossover, the pressure forces decrease and
the two capsules have deformed profiles that become very near the reference ones as
shown in Fig. 7b for ∆y(0) = 2.

We can also analyze the self diffusion effect in the suspension. In Fig. 8, we show
the irreversible increase of capsule separation ∆y(∞)−∆y(0) due to the interaction.
We note that the deviation is largest when the two capsules are on close streamlines
(almost frontal collision), corresponding to ∆y(0) = 0.2. In that case, there is a clear
effect of capsule rigidity: the deviation is larger for rigid particles that for soft ones.
This phenomenon is evidenced by the decrease of the deviation with β and by the
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Figure 8: Influence of ∆y(0), β and Ca2 on the capsule self-diffusion in the shear plane.

ordering of the curves with Ca1. However, for large initial separation (∆y(0) ≥ 0.5),
there is no effect of the flow conditions nor of deformability mismatch. This later
point was noted by Singh and Sarkar (2015), who proposed a correlation where the
final deviation of C1, normalized by the final deviation for two identical capsules
depended linearly on β−0.6. We have been unable to reproduce this correlation. This
may be due to the difference in the capsule trajectories, as discussed in section 2.2.4.

In all the above cases, the time evolution of the maximum deformation energy
density wm

i (t) is similar to the one shown in Fig. 6. It is then best characterized by
the peak value for each capsule wM

i . Correspondingly, we show the coupled influence
of flow conditions (measured by Ca2) and deformability difference β on wM

i in Fig. 9.
We did not consider large values Cai > 1 which might lead to membrane instability
(see section 2.2.3) or low values Cai < 0.1, which correspond to nearly rigid capsules.
In all cases, the interaction leads to values of wM

i that are above the reference level
that would prevail if the capsule were alone. Note that we checked that considering
∆y(0) = 0 instead of 0.2 yielded essentially the same results for wm

i , but for a
significantly larger computational cost. Furthermore, for an initial cross streamlines
separation of one diameter or more (∆y(0) ≥ 2), there is very little interaction effect,
i.e. the capsules do not experience much extra deformation when they cross. The
results in Fig. 9a can also be represented by a mapping of the maximum values of
wM (whether the maximum is reached for C1 or C2) in the Ca1, Ca2 space, as shown
in Fig. 10.

The charts in Fig. 9 and 10 are an important novel result of this study, as they
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a) b)

c) d)

Figure 9: Charts of the maximum deformation energy density wM
i for a given constant value of Ca2

and varying values of β. Solid line: wM
2
; Dotted line: wM

1
. (a) Low initial separation ∆y(0) = 0.2;

(b) Zoom on low values of β for ∆y(0) = 0.2; (c) Medium initial separation ∆y(0) = 1; (d) Large
initial separation ∆y(0) = 2.

allow us to quantify exactly the effect of the interaction on the deformation energy
level.

4. Capsule membrane damage due to interaction

We now study in detail the role of differences in membrane properties on the
possibility of damage occurrence. As an example (see Movie 2), we consider a fairly
rigid capsule (Ca2 = 0.1) and a very deformable one (Ca1 = 0.8). If they were
alone in the flow, both capsules would be subjected to flow conditions that are be-
low the damage limit Cac = 1. However, when they interact, the situation changes
completely, as shown in Fig. 11, where the maximum deformation energy density of
each capsule is represented as a function of position. The motion and deformation
of C2 is barely affected by the presence of C1. On the other hand, C1 first reaches
a steady deformed profile for x1 > −4, with a maximum deformation energy density
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Figure 10: Maximum value of wM (whether the maximum is reached for C1 or C2) for ∆y(0) = 0.2.

wm
1 = wm

ref(Ca1 = 0.8) = 0.51, which is less than the damage limit YD = 0.7. How-
ever, during close interaction, C1 is highly deformed (Fig. 11) and its deformation
energy reaches a maximum value of order wM

1 = 0.92, which is much larger than YD.
We may expect in this case that capsule C1 will be damaged by the interaction.

In order to analyze where the damage occurs, we perform a Lagrangian tracking
of the material points of C1 membrane for which wi ≥ YD at a given time. We use
different grey levels at different instants to show how the damaged region evolves in
shape over time, as shown in Fig. 12. Damage first initiates around the intersection
of the membrane with the vorticity axis as in the case of a single capsule in shear flow
(Grandmaison et al., 2021). However, during interaction the damage zone extends
over most of the top (i.e. opposite to C1) equatorial area of C2. Note that the motion
modulates the shape of the zone damaged at a previous instant of time. Altogether,
some membrane elements are subjected to deformation energy levels higher than YD,
for a duration up to 2.6. As shown by Grandmaison et al. (2021) for a single capsule
subjected to a constant shear flow, once damage is initiated, the density of defects in
the membrane increases with time, until either a steady damaged state or rupture is
reached. This occurs over durations of order 2.5, which are comparable to the time
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Figure 11: Damage of two interacting capsules with membrane different properties β = 8 for
Ca2 = 0.1, ∆x(0) = 10,∆y(0) = 0.2: maximum deformation energy density wm

i as a function of xi.
Capsule profiles in the shear plane are shown before interaction (i), just after damage initialization
(j), at wM

1
(k) and after interaction (l). The reference profile of a single capsule flowing at the

corresponding Ca is represented in orange solid line for C1 and red solid line for C2 in each insert.

of exposition to damaging tensions determined above for C2. We may then expect
that defects will develop on the membrane of C2.

Figure 12: Lagrangian tracking of the damage zone (wM
i > YD) of two interacting capsules with

different membrane mechanical properties (β = 8, Ca1 = 0.8, ∆x(0) = 10,∆y(0) = 0.2). A different
grey level is used for each time step. The times t = 36.8 and t = 37.8 correspond to instants (j)
and (k) in Fig. 11, respectively. The arrows indicate the direction of shear.

Those results are important because they indicate that unexpected damage may
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occur in a suspension due to interactions only. In order to quantify this phenomenon,
we compare the values of wM

i defined in Fig. 9 or 10 to the damage threshold YD, and
build phase diagrams that show when damage should be expected as a function of
the respective capillary numbers of the two capsules. Specifically, using the damage
threshold YD = 0.7, Cac = 1 and close interactions (∆y(0) = 0.2), we obtain the
phase diagram shown in Fig. 13. When Cai ≥ 1, the baseflow itself may lead to
damage (dark zone). When both Ca1 and Ca2 are small enough, no damage will
occur even when the capsules interact (white zone). However, there is a grey zone
where damage is occurring due to interactions only. The interaction damage is more
likely to occur when the capsules have very different properties. Note that for the
sake of simplicity, we have delimited the border between the grey and white zones
with a straight line. We could have used a more sophisticated criterion based for
example on the difference |wM

i − YD|, but the general picture would not have been
changed significantly. Furthermore, the corresponding slight displacement of the
border would have been within the numerical precision.

We assess the effect of the initial separation between the capsules on interac-
tion damage zone by increasing ∆y(0) to 2 (Fig. 14a). When the initial separa-
tion increases, the interaction damage zone becomes smaller because interactions are
weaker. We can also consider the effect of the damage limit for ∆y(0) = 0.2. For
more fragile capsules corresponding, for example, to YD = 0.4, the boundaries of the
phase diagram are correspondingly modified as shown in Fig. 14b. In that case, the
no damage zone domain is considerably diminished.

5. Discussion and conclusion

Using a fluid-structure interaction code coupling the finite element and boundary
integral methods, we have modeled the interaction between two capsules placed in a
simple shear flow. We have investigated how their trajectory and membrane tensions
are impacted by the mechanical properties of the capsule wall, especially when the
latter differ from one capsule to the other. This case is of particular interest, as it is
typical in capsule suspensions. Particle close interactions lead to peaks in membrane
tension, that may exceed the capsule damage limit and lead to rupture.

Some pre-existing studies on capsule interactions in shear flow have used a nu-
merical approach based on finite differences and immersed boundaries which allows
one to consider non-Newtonian fluids and inertial flow conditions (Singh and Sarkar,
2015; Doddi and Bagchi, 2008). The drawback is that the computational domain
must be large enough to verify the far field boundary conditions with accuracy. In-
deed, Singh and Sarkar (2015) have checked that the width of the fluid domain along
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Figure 13: Phase diagram of capsule damage as a function of Ca1 and Ca2 for ∆y(0) = 0.2,
YD = 0.7 (Cac = 1). All the symbols represent a numerical run: N C1 damaged, � C2 damaged, ∗
C1 and C2 damaged.

a) b)

Figure 14: Influence of (a) the initial separation ∆y(0) (YD = 0.7) and (b) the energy criterion YD

(∆y(0) = 0.2) on the damage limits. Solid lines: lower limit of base flow damage; Dash lines: lower
limit of interaction damage. The two solid lines are superimposed on (a).

the velocity gradient direction was large enough to have no influence on the trajec-
tories of the interacting capsules. However, the length of the domain in the flow
direction also has to be long enough to avoid the interaction results to be initial
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state dependent. This point is rarely checked. The advantage of our fluid–structure
interaction numerical code is that the flow domain is infinite with exact boundary
conditions of vanishing perturbation on the outer boundary. The drawback is that
it is limited to Newtonian fluids undergoing flows with negligible inertia.

We used the spherical rest shape as the initial condition, thus following the usual
procedure. However, if we want crossing results that do not depend on the initial
positions of the capsules, we have to position them far enough so that they reach their
equilibrium shape before starting to interact. This procedure is absolutely necessary
to get results that do not depend on the initial state of the system. This point is
very important, but has rarely been taken into account in previous studies.

Our interaction results account for almost head on collisions and cover a wide
range of capillary numbers and capsule properties mismatch. We have chosen to
analyze the capsule deformation in terms of elastic energy rather than a Taylor
deformation parameter, that is a pertinent measure for nearly ellipsoidal shapes but
not for highly asymmetric profiles such as those shown in Fig. 5, 7 and 11. As was
previously noted by Singh and Sarkar (2015), the difference in capsule membrane
rigidity only has a small influence on the trajectory shift after collision (Fig. 8): the
main effect is the collision type. Not surprisingly, we find that the shift is larger for
a head on collision than for a grazing one.

The main result of this paper is the new data that we give on the transient
deformation energy in the membrane of the two capsules at the peak of interaction.
The findings are gathered in the charts of Fig. 9. Those charts can be used to build
phase diagrams similar to Fig. 14b for any appropriate value of damage threshold
in deformation energy density YD. They show that particle close interactions can
be responsible for damage initiation on the capsule membrane and that damage has
enough time to evolve during the capsule motion. The time during which the energy
density exceeds YD is indeed of the same order of magnitude than in Grandmaison
et al. (2021).

The phase diagrams can be used by experimentalists to determine the safe flow
conditions for a suspension of capsules with a dispersion of mechanical properties.
They can also be used to sort out capsules that are too soft. For example, if one
subjects a suspension of cells C2 to harmless flow conditions (e.g. Ca2 = 0.2), the
phase diagram in Fig. 13 shows that all the cells with an elastic modulus Gs1 less than
Gs2/3.5 might be damaged because of hydrodynamic interactions. This value of Gs1

is significantly higher than the one (Gs2/5) that would be obtained by considering
base flow induced damage only. Conversely, if cells C2 are subjected to a high shear
(e.g. Ca2 = 0.8), they will be damaged by a collision with hard particles (with the
same size) in the suspension. The two phenomena may explain why cell damage
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is observed in needle delivery systems where high shear rates prevail near the walls
(Aguado et al., 2012; Wahlberg et al., 2018; Chen et al., 2022).

Note that we have built the phase diagrams assuming the same value of YD for
the two capsules. But, YD could well vary with Gs and not have the same value for
the two capsules. However, we are not aware of any data on this issue. Note also
that the two capsules have been assumed to have the same size. The interaction of
two capsules with different diameters is in progress.
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