Communication Dans Un Congrès Année : 2025

Context-Aware Multi-Criteria Recommender Systems Using Variable Selection Networks

Résumé

Conventional recommender systems, which rely on a single criterion such as overall rating, often fail to capture the complexity of user preferences and the influence of contextual information. Context-aware multi-criteria recommender systems address these limitations by incorporating multiple dimensions of user preferences, item attributes, and contextual factors, leading to more accurate and relevant recommendations. This paper presents a context-aware multi-criteria recommender system using variable selection networks. Our approach dynamically selects the most relevant features from a variety of inputs, including user profiles, item characteristics, multiple criteria, and contextual factors, to enhance personalization. By leveraging deep learning-based variable selection networks, our model significantly improves recommendation accuracy and interpretability, outperforming several baseline models in experimental evaluations. This advancement underscores the importance of integrating both multi-criteria and context-aware methodologies in modern recommender systems.
Fichier principal
Vignette du fichier
mutlticriteria_rs.pdf (311) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04961071 , version 1 (21-02-2025)

Licence

Identifiants

Citer

Ngoc Luyen Le, Marie-Hélène Abel. Context-Aware Multi-Criteria Recommender Systems Using Variable Selection Networks. Proceedings of the 11th International Conference on Advanced Intelligent Systems and Informatics (AISI 2025), Jan 2025, Port Said, Egypt. pp.3-15, ⟨10.1007/978-3-031-81308-5_1⟩. ⟨hal-04961071⟩
0 Consultations
0 Téléchargements

Altmetric

Partager

More