Towards a data-driven paradigm for characterizing plastic anisotropy using principal components analysis and manifold learning - Université de technologie de Compiègne
Article Dans Une Revue Computational Materials Science Année : 2024
Fichier non déposé

Dates et versions

hal-04445491 , version 1 (08-02-2024)

Identifiants

Citer

Jianqiang Jin, Ludovic Cauvin, Balaji Raghavan, Piotr Breitkopf, Subhrajit Dutta, et al.. Towards a data-driven paradigm for characterizing plastic anisotropy using principal components analysis and manifold learning. Computational Materials Science, 2024, 235, pp.112834. ⟨10.1016/j.commatsci.2024.112834⟩. ⟨hal-04445491⟩
44 Consultations
0 Téléchargements

Altmetric

Partager

More