A Data-Driven Space-Time-Parameter Reduced-Order Model with Manifold Learning for Coupled Problems: Application to Deformable Capsules Flowing in Microchannels - Université de technologie de Compiègne
Article Dans Une Revue Entropy Année : 2021

A Data-Driven Space-Time-Parameter Reduced-Order Model with Manifold Learning for Coupled Problems: Application to Deformable Capsules Flowing in Microchannels

Toufik Boubehziz
  • Fonction : Auteur
  • PersonId : 1262711
  • IdHAL : 1162203
Carlos Quesada-Granja
  • Fonction : Auteur
  • PersonId : 1109757
Claire Dupont
Pierre Villon
  • Fonction : Auteur
  • PersonId : 872911
Anne-Virginie Salsac

Résumé

An innovative data-driven model-order reduction technique is proposed to model dilute micrometric or nanometric suspensions of microcapsules, i.e., microdrops protected in a thin hyperelastic membrane, which are used in Healthcare as innovative drug vehicles. We consider a microcapsule flowing in a similar-size microfluidic channel and vary systematically the governing parameter, namely the capillary number, ratio of the viscous to elastic forces, and the confinement ratio, ratio of the capsule to tube size. The resulting space-time-parameter problem is solved using two global POD reduced bases, determined in the offline stage for the space and parameter variables, respectively. A suitable low-order spatial reduced basis is then computed in the online stage for any new parameter instance. The time evolution of the capsule dynamics is achieved by identifying the nonlinear low-order manifold of the reduced variables; for that, a point cloud of reduced data is computed and a diffuse approximation method is used. Numerical comparisons between the full-order fluid-structure interaction model and the reduced-order one confirm both accuracy and stability of the reduction technique over the whole admissible parameter domain. We believe that such an approach can be applied to a broad range of coupled problems especially involving quasistatic models of structural mechanics.
Fichier principal
Vignette du fichier
21_09_09_Entropy_Proof.pdf (2.17 Mo) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte

Dates et versions

hal-03339115 , version 1 (09-09-2021)

Identifiants

Citer

Toufik Boubehziz, Carlos Quesada-Granja, Claire Dupont, Pierre Villon, Florian de Vuyst, et al.. A Data-Driven Space-Time-Parameter Reduced-Order Model with Manifold Learning for Coupled Problems: Application to Deformable Capsules Flowing in Microchannels. Entropy, 2021, 23, pp.1193. ⟨10.3390/e1010001⟩. ⟨hal-03339115⟩
186 Consultations
129 Téléchargements

Altmetric

Partager

More