Extensions of the empirical interpolation method to vector-valued functions
Résumé
In industrial Computer-Assisted Engineering, it is common to deal with vector fields or multiple field variables. In this paper, different vector-valued extensions of the Empirical Interpolation Method (EIM) are considered. EIM has been shown to be a valuable tool for dimensionality reduction, reduced-order modeling for nonlinear problems and/or synthesis of families of solutions for parametric problems. Besides already existing vector-valued extensions, a new vector-valued EIM-the so-called VEIM approach-allowing interpolation on all the vector components is proposed and analyzed in this paper. This involves vector-valued basis functions, same magic points shared by all the components and linear combination matrices rather than scalar coefficients. Coefficient matrices are determined under constraints of point-wise interpolation properties for all the components and exact reconstruction property for the snapshots selected during the greedy iterative process. For numerical experiments, various vector-valued approaches including VEIM are tested and compared on various one, two and three-dimensional problems. All methods return robustness, stability and rather good convergence properties as soon as the Kolmogorov width of the dataset is not too big. Depending of the use case, a suitable and convenient method can be chosen among the different vector-valued EIM candidates.
Origine | Fichiers produits par l'(les) auteur(s) |
---|